

Statistical Limits of Machine Learning

Debarghya Ghoshdastidar

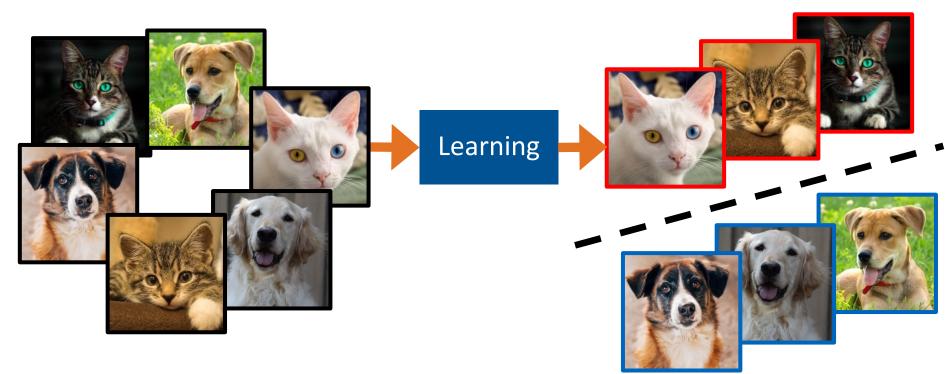
Assistant Professor

Theoretical Foundations for Artificial Intelligence

TUM Informatik

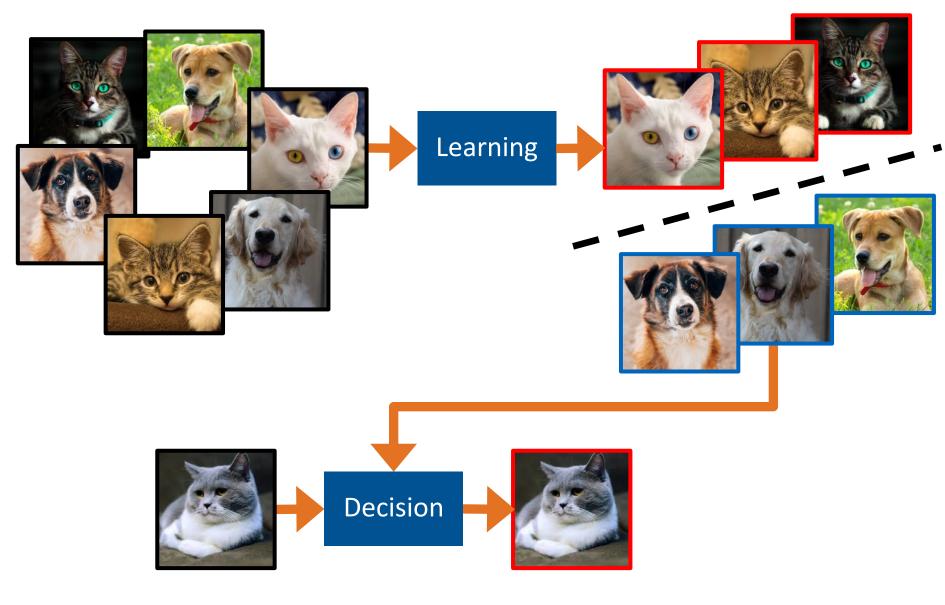
Machine Learning

ТШП



Machine Learning

ТШП



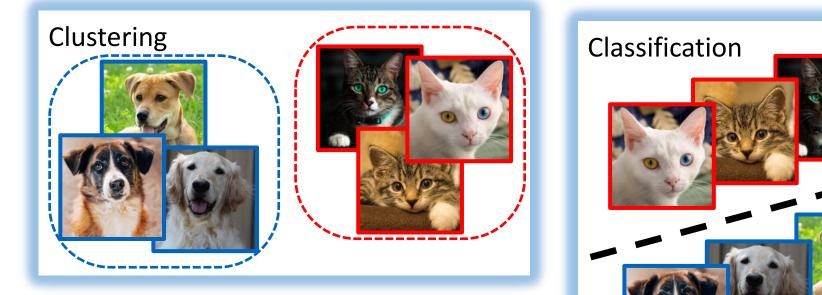
Machine Learning works

Machine Learning works

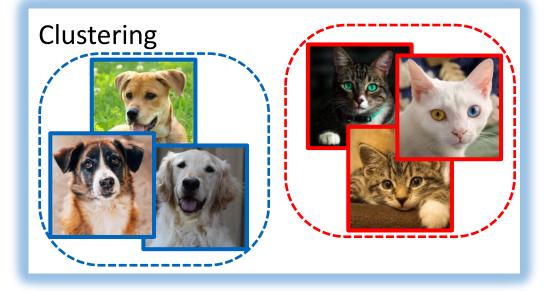
- What do ML algorithms learn?
- Why do ML algorithms work?
- When can we find patterns?

Diversity of Machine Learning

Diversity of Machine Learning

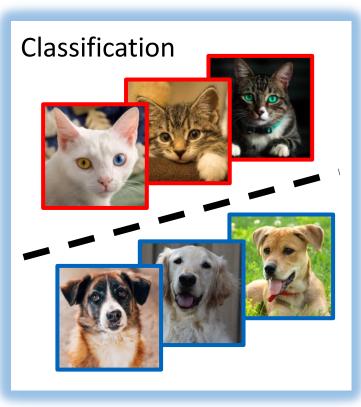


Diversity of Machine Learning



{

Hypothesis Testing



... and many more

We know a lot, but not everything

 Machine learning works because we have huge amount of data

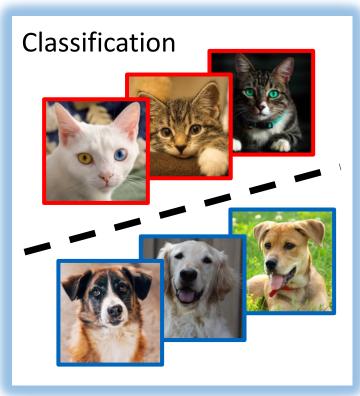
... limited data in many problems

• Sample complexity:

How much training data needed to learn good classifier?

... Statistical limit of learning !!

Theoretical foundation since 1980s
PAC learning, Generalisation ...



We know something, but not enough

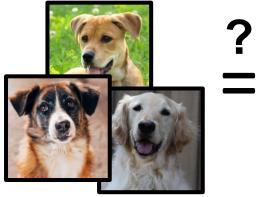
ПП

- Studied in statistics since 1900s, but theory for smaller data
- Less understood in high-dimensional setting:

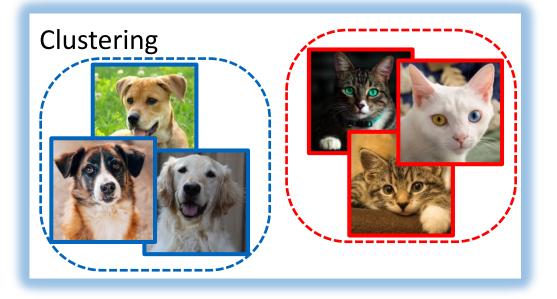
number of samples < data dimension

- Statistical limit of testing:
 - When can we detect differences?

Hypothesis Testing



We know very little



- Still no consensus on the definition of *good* cluster
- Many theoretical results, but limited understanding
- Statistical limit of clustering:
 - When does data reveal clusters?
 - When can we find clusters?

Focus of our group

- Statistical limits of planted clustering
 - Find clusters hidden in random data
 - High-dimensional data / Large graphs

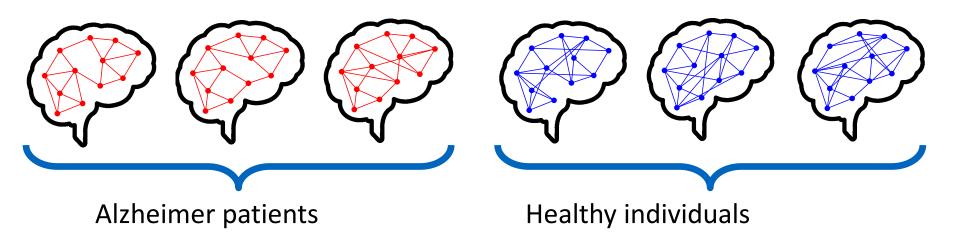
- Statistical limits of hypothesis testing for graphs
 - Two-sample testing

Two-sample testing of graphs

ТЛП

• Given two populations,

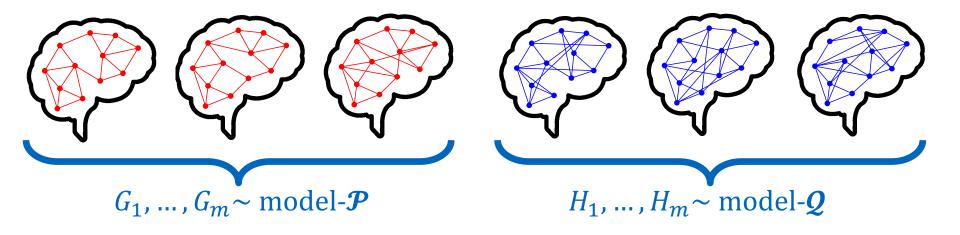
test if both come from same distribution



- Do brain networks reveal neurological disorders?
- Do we interact in the same way on various social networks?

Two-sample testing of graphs

- All graphs on common set of *n* vertices
- Two models (distributions) ${\cal P}$ and ${\cal Q}$
- Observe *m* graphs from each model



• Problem:

$$\mathcal{P} = \mathcal{Q}$$
 vs.
models identical

 $\mathcal{P} \neq Q$

models different

Testing with few samples

Study on Alzheimer (ADNI)

[Zajac et al. Brain Sci. 2017]

- Structural brain networks with 68 vertices (ROIs)
 - 10 Alzheimer patients
 - 10 Control (healthy) subjects ... m = 10
- Conclusion: Alzheimer affects brain network

Oregon network data

[Leskovec et al. KDD 2005]

- Peering networks among 11806
 - 2 networks generated per week ... m = 2
 - Data for 9 weeks (9 different groups)
- **Conclusion:** Networks change significantly over time

Theoretical concerns

- Classical tests typically work when $m \rightarrow \infty$
 - Often use asymptotic null distributions

- Any test /algorithm returns a result
 - Not necessarily correct for small m
 - Need methods with guarantees for small m

VS

- Small changes cannot be detected for small *m*
 - Modify the problem:

 $\mathcal{P} = Q$

models identical

— Which distance should we use?

 $d(\mathcal{P}, \mathcal{Q}) > \rho$ models highly different

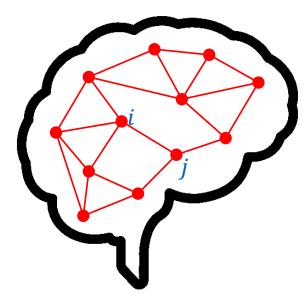
A simple graph model

- Common vertex set {1, 2, ..., *n*}
- Inhomogeneous Erdös-Rényi (IER) model
 - All edges are independent
- Model \mathcal{P} characterised by $n \times n$ matrix P

- Edge (i, j) added with probability P_{ij}

- Model Q characterised by $n \times n$ matrix Q
- Given graphs $G_1, \ldots, G_m \sim \text{IER}(P)$ and $H_1, \ldots, H_m \sim \text{IER}(Q)$
- Test hypotheses:

$$P = Q$$
 vs $d(P,Q) > \rho$



Typical two-sample test

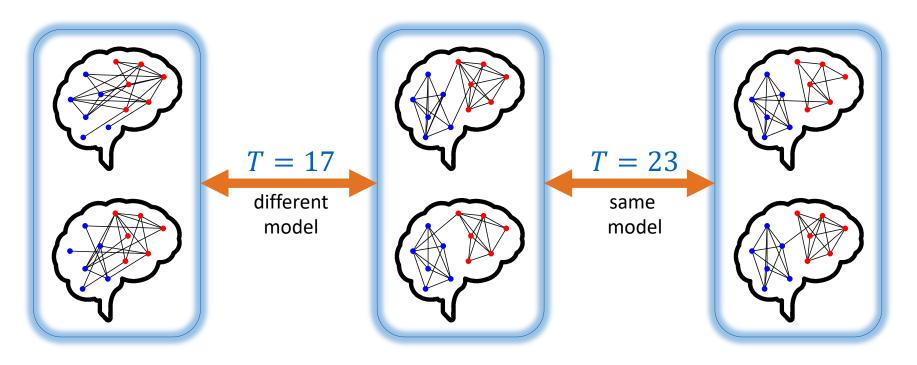
- ТЛП
- Given: G_1, \ldots, G_m (1st population) and H_1, \ldots, H_m (2nd population)
- Let \hat{P}_{ij} = fraction of graphs in 1st population with edge (i, j) \hat{Q}_{ij} = same for 2nd population
- Statistic $T = \sum_{(i,j)} w_{ij} (\hat{P}_{ij} \hat{Q}_{ij})^2$ $w_{ij} = \text{suitable weights}$

• Theory:
$$\lim_{m \to \infty} T = \begin{cases} \chi^2 - random variable & \text{for } P = Q \\ \infty & \text{for } P \neq Q \end{cases}$$

 χ^2 -test: Say models are different if T large

• Result: Test has high accuracy for large *m*

Performance for small m



- Theoretical result:
 - Test detects difference in total variation (TV) distance
 - No high accuracy test for TV-distance for $m \ll n$

New two-sample tests

- Aim to detect difference in matrix norms (Frobenius, spectral)
- Statistic T = unbiased estimate of ||P Q||
 - Different norms lead to different new tests

⁻ Ghoshdastidar & Luxburg. Practical methods for graph two-sample testing. Neurips 2018.

Ghoshdastidar et al. Two-sample hypothesis testing for inhomogeneous random graphs.
The Annals of Statistics (in press).

New two-sample tests

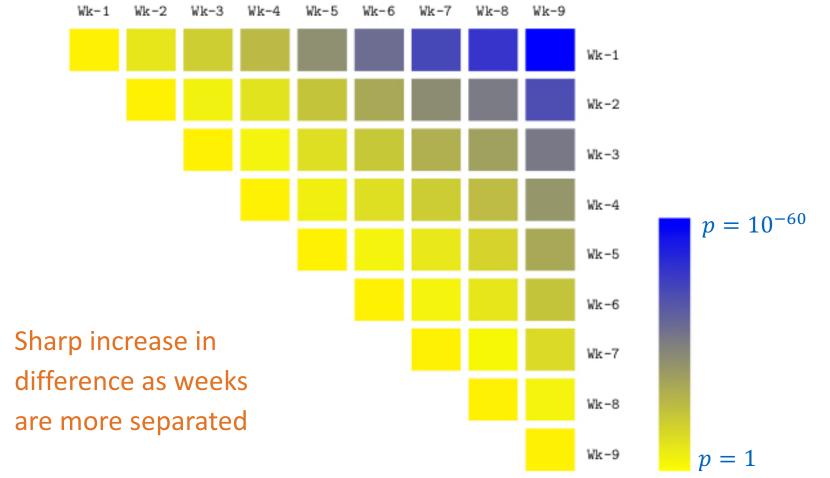
- Aim to detect difference in matrix norms (Frobenius, spectral)
- Statistic T = unbiased estimate of ||P Q||
 - Different norms lead to different new tests
- Theoretical results:
 - Tests have high accuracy as $n \to \infty$ for every $m \ge 1$
 - No test can detect small separation $||P Q|| \leq \sqrt{\frac{n}{m}}$
 - Tests are optimal: Accurate whenever $||P Q|| \gtrsim \sqrt{\frac{n}{m}}$

⁻ Ghoshdastidar & Luxburg. Practical methods for graph two-sample testing. Neurips 2018.

⁻ Ghoshdastidar et al. Two-sample hypothesis testing for inhomogeneous random graphs. *The Annals of Statistics (in press).*

Testing Oregon networks

- Peering information of n = 11806 routers over 9 weeks
- m = 2 networks for each week (classical tests do not work)
- Colour plot for *p*-values (lower *p* indicates more difference)



Conclusion: Statistical limits of testing

- Difficult to infer from few samples / graphs
 - Problem may become unsolvable (in minimax sense)
- Should not *blindly* apply classical tests
 - Need new techniques / new perspectives
- Better understanding of tests / algorithms needed
- General recommendation:

Look before you leap (into conclusion)

Research Group

Leena Vankadara

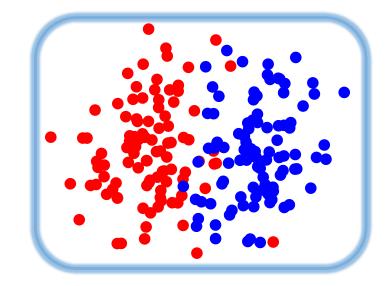
Ph.D. Student University of Tübingen

Pascal Esser Ph.D. Student joined in December

Statistical limits of planted clustering

- Clustered data + random noise
 - High dim data / large graphs
- When can we say that there are clusters?

Information theoretic limit



ПΠ

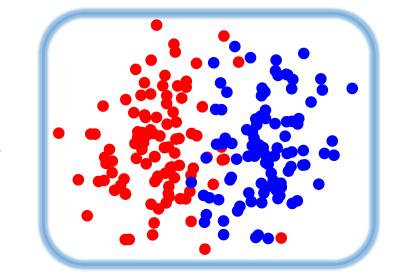
Statistical limits of planted clustering

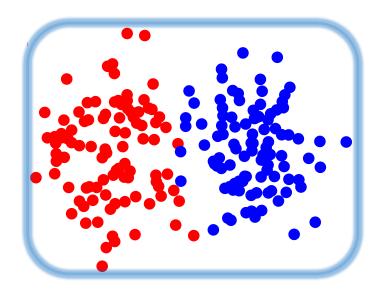
- Clustered data + random noise
 - High dim data / large graphs
- When can we say that there are clusters?

Information theoretic limit

Computational limit

- When can algorithms find clusters?
 - Spectral algorithms
 - Kernel methods
 - Neural networks





Statistical limits of planted clustering

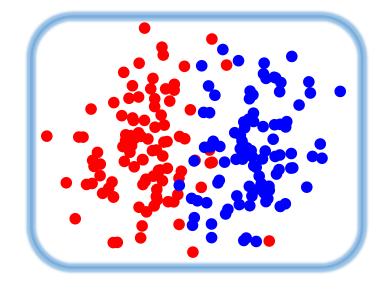
- Clustered data + random noise
 - High dim data / large graphs
- When can we say that there are clusters?

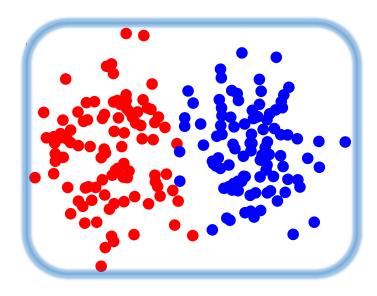
Information theoretic limit

Ŧ

Computational limit

- When can algorithms find clusters?
 - Spectral algorithms
 - Kernel methods
 - Neural networks





Two-sample test for m = 1

- Given: G (with adjacency matrix A_G) and H (adjacency matrix A_H)
- Statistic $T = ||w \circ (A_G A_H)||_{spectral}$

 $w \circ A =$ rescale matrix entries with suitable weights $||A||_{spectral} =$ matrix spectral norm

•
$$\lim_{n \to \infty} T = \begin{cases} \text{Tracy Widom variable} & \text{for } P = Q \\ \infty & \text{for large } \|P - Q\|_{spectral} \end{cases}$$

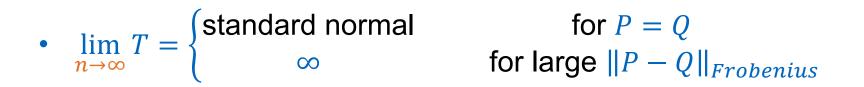
Tracy-Widom-test: Say models are different if *T* large

- Result: Test has high accuracy for large *n*
- Variant of the test has high accuracy for large *n* or large *m*

Two-sample test for m = 2

• Given: G, G' (adjacency $A_G, A_{G'}$) and H, H' (adjacency $A_H, A_{H'}$)

• Statistic
$$T = w \sum_{(i,j)} ((A_G)_{ij} - (A_H)_{ij}) ((A_{G'})_{ij} - (A_{H'})_{ij})$$



Normal-test: Say models are different if |T| large

- Result: Test has high accuracy for large *n*
- Variant of the test has high accuracy for large *n* or large *m*