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Machine Learning works

• What do ML algorithms learn?

• Why do ML algorithms work?

• When can we find patterns?
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Hypothesis Testing

=
?

... and many more



We know a lot, but not everything

Classification• Machine learning works because we

have huge amount of data

… limited data in many problems

• Sample complexity:

How much training data needed to 

learn good classifier? 

… Statistical limit of learning !!

• Theoretical foundation since 1980s

PAC learning, Generalisation …



We know something, but not enough

Hypothesis Testing

=
?

• Studied in statistics since 1900s, but theory for smaller data

• Less understood in high-dimensional setting:

number of samples < data dimension

• Statistical limit of testing:

─ When can we detect differences?  



We know very little

Clustering

• Still no consensus on the definition of good cluster

• Many theoretical results, but limited understanding

• Statistical limit of clustering:

─ When does data reveal clusters?

─ When can we find clusters?    



• Statistical limits of planted clustering

─ Find clusters hidden in random data

─ High-dimensional data / Large graphs

• Statistical limits of hypothesis testing for graphs

─ Two-sample testing

Focus of our group



Two-sample testing of graphs

• Given two populations, 

test if both come from same distribution

Alzheimer patients Healthy individuals

• Do brain networks reveal neurological disorders? 

• Do we interact in the same way on various social networks? 



Two-sample testing of graphs

• All graphs on common set of 𝑛 vertices

• Two models (distributions) 𝓟 and 𝓠

• Observe 𝑚 graphs from each model

𝐺&,… , 𝐺)~model-𝓟 𝐻&,… ,𝐻)~model-𝓠

• Problem:
𝓟 = 𝓠 vs. 𝓟 ≠ 𝓠

models identical   models different 



Testing with few samples

Study on Alzheimer (ADNI) [Zajac et al. Brain Sci. 2017]

• Structural brain networks with 68 vertices (ROIs) 

─ 10 Alzheimer patients

─ 10 Control (healthy) subjects … 𝑚 = 10

• Conclusion: Alzheimer affects brain network

Oregon network data [Leskovec et al. KDD 2005]

• Peering networks among 11806

─ 2 networks generated per week … 𝑚 = 2

─ Data for 9 weeks (9 different groups) 

• Conclusion: Networks change significantly over time 



Theoretical concerns
• Classical tests typically work when 𝑚 → ∞

─ Often use asymptotic null distributions

• Any test /algorithm returns a result

─ Not necessarily correct for small 𝑚

─ Need methods with guarantees for small 𝑚

• Small changes cannot be detected for small 𝑚

─ Modify the problem:
𝓟 = 𝓠 vs 𝑑 𝓟,𝓠 > 𝜌

models identical       models highly different
─ Which distance should we use?



A simple graph model

• Common vertex set {1, 2, … , 𝑛}

• Inhomogeneous Erdös-Rényi (IER) model

─ All edges are independent

• Model 𝓟 characterised by 𝑛 × 𝑛 matrix 𝑃

─ Edge 𝑖, 𝑗 added with probability 𝑃DE

• Model 𝓠 characterised by 𝑛 × 𝑛 matrix 𝑄

• Given graphs 𝐺&,… , 𝐺) ~ IER(𝑃) and 𝐻&,… ,𝐻)~ IER(𝑄)

• Test hypotheses:
𝑃 = 𝑄 vs 𝑑 𝑃, 𝑄 > 𝜌

𝑖

𝑗



Typical two-sample test

• Given: 𝐺&,… , 𝐺) (1𝑠𝑡 population) and 𝐻&,… ,𝐻) (2𝑛𝑑 population) 

• Let K𝑃DE = fraction of graphs in 1𝑠𝑡 population with edge (𝑖, 𝑗)
K𝑄DE = same for 2𝑛𝑑 population

• Statistic 𝑇 = ∑ D,E 𝑤DE K𝑃DE − K𝑄DE
P

𝑤DE = suitable weights

• Theory: lim
)→R

𝑇 = S𝝌
2−random variable for 𝑃 = 𝑄

∞ for 𝑃 ≠ 𝑄

𝝌2-test: Say models are different if 𝑇 large 

• Result: Test has high accuracy for large 𝑚



Performance for small 𝒎

• Theoretical result:

─ Test detects difference in total variation (TV) distance

─ No high accuracy test for TV-distance for 𝑚 ≪ 𝑛

𝑇 = 17
different

model

𝑇 = 23
same 
model



New two-sample tests

• Aim to detect difference in matrix norms (Frobenius, spectral) 

• Statistic 𝑇 = unbiased estimate of 𝑃 − 𝑄

─ Different norms lead to different new tests

– Ghoshdastidar & Luxburg. Practical methods for graph two-sample testing. Neurips 2018.

– Ghoshdastidar et al. Two-sample hypothesis testing for inhomogeneous random graphs. 

The Annals of Statistics (in press).



New two-sample tests

• Aim to detect difference in matrix norms (Frobenius, spectral) 

• Statistic 𝑇 = unbiased estimate of 𝑃 − 𝑄

─ Different norms lead to different new tests

– Ghoshdastidar & Luxburg. Practical methods for graph two-sample testing. Neurips 2018.

– Ghoshdastidar et al. Two-sample hypothesis testing for inhomogeneous random graphs. The 

Annals of Statistics (in press).

• Theoretical results:

─ Tests have high accuracy as 𝑛 → ∞ for every 𝑚 ≥ 1

─ No test can detect small separation 𝑃 − 𝑄 ≲ ]
^

─ Tests are optimal: Accurate whenever 𝑃 − 𝑄 ≳ ]
^



Testing Oregon networks
• Peering information of 𝑛 = 11806 routers over 9 weeks

• 𝑚 = 2 networks for each week (classical tests do not work)

• Colour plot for 𝑝-values (lower 𝑝 indicates more difference)

𝑝 = 10cde

𝑝 = 1

Sharp increase in 
difference as weeks 
are more separated



Conclusion: Statistical limits of testing

• Difficult to infer from few samples / graphs

─ Problem may become unsolvable (in minimax sense)

• Should not blindly apply classical tests

─ Need new techniques / new perspectives

• Better understanding of tests / algorithms needed

• General recommendation:

Look before you leap (into conclusion)



Research Group

Leena Vankadara Pascal Esser
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University of Tübingen joined in December



Statistical limits of planted clustering

• Clustered data + random noise

─ High dim data / large graphs

• When can we say that there are clusters?

Information theoretic limit 
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Two-sample test for 𝒎 = 𝟏

• Given: 𝐺 (with adjacency matrix 𝐴h)   and 𝐻 (adjacency matrix 𝐴i )

• Statistic 𝑇 = 𝑤 ○ 𝐴h − 𝐴i klmnopqr

• lim
s→R

𝑇 = t
Tracy Widom variable for 𝑃 = 𝑄

∞ . for large 𝑃 − 𝑄 klmnopqr

Tracy-Widom-test: Say models are different if 𝑇 large 

• Result: Test has high accuracy for large 𝑛

• Variant of the test has high accuracy for large 𝑛 or large 𝑚

𝑤 ○ 𝐴 = rescale matrix entries 
with suitable weights

𝐴 klmnopqr = matrix spectral norm

Two-sample test for ! = #
• Given: $ (with adjacency matrix %&)   and ' (adjacency matrix %( )

• Statistic ) = * ○ %& − %( -./01234

• lim8→:) = ;Tracy Widom variable for < = =
∞ . for large < − = -./01234

Tracy-Widom-test: Say models are different if ) large 

• Result: Test has high accuracy for large @

• Variant of the test has high accuracy for large @ or large A

* ○ % = rescale matrix entries 
with suitable weights

% -./01234 = matrix spectral norm



Two-sample test for 𝒎 = 𝟐

• Given: 𝐺, 𝐺′ (adjacency 𝐴h, 𝐴hx )   and 𝐻,𝐻′ (adjacency 𝐴i, 𝐴ix )

• Statistic 𝑇 = 𝑤∑ D,E 𝐴h DE − 𝐴i DE 𝐴hx DE − 𝐴ix DE

• lim
s→R

𝑇 = Sstandard normal for 𝑃 = 𝑄
∞ for large 𝑃 − 𝑄 ypz{msD|k

Normal-test: Say models are different if 𝑇 large 

• Result: Test has high accuracy for large 𝑛

• Variant of the test has high accuracy for large 𝑛 or large 𝑚


