Verification of Randomized Consensus Algorithms under Round-Rigid Adversaries

Marijana Lazić TU München

Nathalie Bertrand

Igor Konnov

Josef Widder

CONCUR, August 30, 2019

European Research Council Established by the European Commission

FUF Der Wissenschaftsfonds

VIENNA SCIENCE AND TECHNOLOGY FUND

Fault-tolerant distributed algorithms

n processes communicate by sending messages asynchronously

f processes are faulty (unknown)

t is an upper bound on f (known)

resilience condition on *n*, *t*, and *f*,

e.g., $n > 3t \land t \ge f \ge 0$

Parameterized Verification

 $\forall n, t, f \text{ with } n > 3t \text{ and } t \ge f \ge 0.$ $\underbrace{P(n, t) \parallel P(n, t) \parallel \dots \parallel P(n, t)}_{n-f \text{ correct}} \parallel \underbrace{\text{Faulty} \parallel \dots \parallel \text{Faulty}}_{f \text{ faulty}} \models Specs$

Verification of non-randomized distributed algorithms

(Konnov, L., Veith, Widder, POPL 2017)

Threshold automata

Counter System as a Semantic of a TA

Specifications in LTL_{-X} with counters

Agreement : No two correct processes decide differently (safety)

$$\mathbf{F} \ \kappa[D_{v}] > 0 \quad o \quad \mathbf{G} \ \kappa[D_{1-v}] = 0$$

Termination : Eventually all correct processes decide

$$\mathsf{F} \bigwedge_{\ell \in \mathcal{L} \setminus \{D_0, D_1\}} \kappa[\ell] = 0$$

We denote this fragment by ELTL_{FT}

(liveness)

Verification of Threshold-based Algorithms

Does Sys(TA) $\models \varphi$? (Konnov, L., Veith, Widder, POPL'17)

Given:

- a threshold automaton TA,
- a specification φ in ELTL_{FT}, and
- a resilience condition RC,

we can check whether for all parameters satisfying RC holds that

 $\mathsf{Sys}(\mathsf{TA}) \models \varphi$

[forsyte.at/software/bymc]

What about consensus?

Theorem (FLP'85)

There is no asynchronous consensus algorithm!

- faulty processes
- asynchrony
- safety requirements
- liveness requirement

What about consensus?

Theorem (FLP'85)

There is no asynchronous consensus algorithm!

- faulty processes
- asynchrony
- safety requirements
- liveness requirement almost sure termination

Solution: Randomized consensus algorithms

Contribution:

Extend previous result to verify randomized consensus algorithms

```
bool v := input_value({0, 1});
int r := 1;
while (true) do
send (R,r,v) to all;
wait for n - t messages (R,r,*);
```

```
[Ben-Or, PODC 1983]
```

```
bool v := input_value({0, 1});
int r := 1;
while (true) do
 send (R,r,v) to all;
wait for n - t messages (R,r,*);
 if received (n + t) / 2 messages (R,r,w)
 then send (P,r,w,D) to all;
 else send (P,r,?) to all;
 wait for n - t messages (P,r,*);
                                        [Ben-Or, PODC 1983]
```

```
bool v := input_value({0, 1});
int r := 1;
while (true) do
send (R,r,v) to all;
wait for n - t messages (R,r,*);
 if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n - t messages (P,r,*);
 if received at least t + 1
   messages (P,r,w,D) then {
                   /* enough support -> update estimate */
 v := w;
  if received at least (n + t) / 2
  messages (P,r,w,D)
 then decide w;
                              /* strong majority -> decide */
                                        [Ben-Or, PODC 1983]
```

```
bool v := input_value({0, 1});
int r := 1;
while (true) do
 send (R,r,v) to all;
wait for n - t messages (R,r,*);
 if received (n + t) / 2 messages (R,r,w)
 then send (P,r,w,D) to all;
 else send (P,r,?) to all;
 wait for n - t messages (P,r,*);
 if received at least t + 1
    messages (P,r,w,D) then {
  v := w;
                   /* enough support -> update estimate */
  if received at least (n + t) / 2
   messages (P,r,w,D)
  then decide w;
                             /* strong majority -> decide */
 } else v := random({0,1});  /* unclear -> coin toss */
 r := r + 1;
od
                                       [Ben-Or, PODC 1983]
```

Probabilistic Threshold Automata (PTA)

Probabilistic Threshold Automata (PTA)

Probabilistic Threshold Automata (PTA)

Probabilistic Counter System for a PTA

Randomized consensus properties

Agreement : No two correct processes decide differently (no matter in which two rounds they are)

Validity : If all correct processes have initial value v (in the 1st round) then no process should decide 1 - v (in any other round)

Almost Sure Termination : Under every round-rigid adversary, with probability 1 every correct process eventually decides

ТШ

Agreement : No two correct processes decide differently (no matter in which two rounds they are)

Validity : If all correct processes have initial value v (in the 1st round) then no process should decide 1 - v (in any other round)

Almost Sure Termination : Under every round-rigid adversary, with probability 1 every correct process eventually decides

Challenges

The Key Idea

Elimination of these brings us to the previous non-randomized setting

Two types of specifications

Specs with multiple rounds

 $\forall k, \forall k'. \mathbf{A} \varphi[k, k']$

Specs with probability 1

$$\mathbb{P}_{\mathsf{s}}(\psi[k]) = 1$$

Two types of specifications

Specs with multiple rounds

Specs with probability 1

$$\forall k, \forall k'. \mathbf{A} \varphi[k, k']$$

$$\mathbb{P}_{\mathsf{s}}(\psi[k]) = \mathsf{1}$$

Reduction to one-round system

Reduction to one-round system

Reasoning about round boundaries

Original System:

$$P_1 \parallel P_2 \parallel \cdots \parallel P_n$$
, with $P_i = R_i^1$; R_i^2 ; R_i^3 ; ...
reduced to

$$R_1^1 \parallel R_2^1 \parallel \cdots \parallel R_n^1$$
; $R_1^2 \parallel R_2^2 \parallel \cdots \parallel R_n^2$; ...

 \Rightarrow Reason about round boundaries only!

{*init*} $R_1^1 \parallel R_2^1 \parallel \cdots \parallel R_n^1 \{\phi_1\}; R_1^2 \parallel R_2^2 \parallel \cdots \parallel R_n^2 \{\phi_2\}; \ldots$

Agreement: if **F** decision *v* in *k* then **G** no decision 1 - v in k'

 $(A) \land (B) \rightarrow Agreement$

Both are one-round specs

Agreement: if **F** decision *v* in *k* then **G** no decision 1 - v in k'

(A) if F decision v in k then G empty final states with 1 - v in k

Agreement: if **F** decision *v* in *k* then **G** no decision 1 - v in k'

(B) if G empty initial with 1 - v in k then G empty final with 1 - v in k

Two types of specifications

Specs with multiple rounds

Specs with probability 1

$$\forall k, \forall k'. \mathbf{A} \varphi[k, k']$$

$$\mathbb{P}_{\mathsf{s}}(\psi[k]) = \mathsf{1}$$

Two types of specifications

Specs with multiple rounds

 $\forall k, \forall k'. \mathbf{A} \varphi[k, k']$

Specs with probability 1

$$\mathbb{P}_{\mathsf{s}}(\psi[k]) = \mathsf{1}$$

Separately reason about probabilities

Reduction to one-round system

How can we now swap "fast" and "slow"?

Our swapping trick does not work for arbitrary adversaries!

Restriction to round-rigid adversaries

- respects round order
- branching at the end of each round

Almost sure termination: Under every round-rigid adversary, with probability 1 every correct process eventually decides.

Simplifying the problem:

- 1. Define a "lucky" situation for a round *k*
- 2. Check: Lucky in k means everyone decides in k + 1
- 3. Check: Lucky happens with non-zero probability

This implies Almost sure termination!

1. Defining a "lucky" situation for a round Π

2. Lucky in k means termination in k + 1

if **G** empty initial with 1 - v in k then **F** all decide v in k

3. Lucky happens with non-zero probability

3. Lucky happens with non-zero probability

Abstracting Coin-Toss Outcomes

A non-probabilistic threshold automaton

Ш

	Meaning	Probability
lucky in <i>k</i>	all decide in $k + 1$	<i>p</i> > 0
"unlucky" in <i>k</i>	NOT all decide in $k + 1$	1 – <i>p</i> < 1
		$\lim_{k\to\infty}(1-\rho)^k=0$

	Meaning	Probability
lucky in <i>k</i>	all decide in $k + 1$	<i>p</i> > 0
"unlucky" in <i>k</i>	NOT all decide in $k + 1$	1 – <i>p</i> < 1
		$\lim_{k\to\infty}(1-\rho)^k=0$

	Meaning	Probability
lucky in <i>k</i>	all decide in $k + 1$	<i>p</i> > 0
"unlucky" in <i>k</i>	NOT all decide in $k + 1$	1 – <i>p</i> < 1
"constantly unlucky"	non-termination	$\lim_{k\to\infty}(1-p)^k=0$
	termination	1

	Meaning	Probability
lucky in <i>k</i>	all decide in $k + 1$	<i>p</i> > 0
"unlucky" in <i>k</i>	NOT all decide in $k + 1$	1 – <i>p</i> < 1
"constantly unlucky"	non-termination	$\lim_{k\to\infty}(1-p)^k=0$
	termination	1

Two types of specifications

Specs with multiple rounds

 $\forall k, \forall k'. \mathbf{A} \varphi[k, k']$

Specs with probability 1

$$\mathbb{P}_{\mathsf{s}}(\psi[k]) = \mathsf{1}$$

Experimental evaluation

ПΠ

We have verified 6 parameterized randomized consensus algorithms with several one-round safety and liveness properties:

Algorithm	Verification per property
- Ben-Or's Byzantine random. consensus	\leq 1 sec
- Ben-Or's crash random. consensus	\leq 1 sec
- Ben-Or's clean crash random. consensus	\leq 1 sec
- Bracha's randomized consensus	\leq 1 sec
- Raynal's k-set agreement	3–40 sec
- Song's and van Renesse's BOSCO	3 hours on a cluster

Conclusions

Parameterized verification of randomized consensus algorithms

Main contributions:

- Round reduction for all non-deterministic systems of threshold automata
- Compositional reasoning for non-probabilistic consensus specifications
- Probabilistic reasoning for almost-sure termination in consensus

Future work

- more general adversaries

Conclusions

Parameterized verification of randomized consensus algorithms

Main contributions:

- Round reduction for all non-deterministic systems of threshold automata
- Compositional reasoning for non-probabilistic consensus specifications
- Probabilistic reasoning for almost-sure termination in consensus

Future work

- more general adversaries

