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'Real Life System
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" Model Checker (requirements) and feed
(Model + Properties)§ (Controller\ it to a model checker.
_____________________________________________________________ Strategy
——— The strategy i.e. the logic of the

software which is to be followed
by the physical system.
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Learn a strategy and
represent (predict)
In @ much smaller form

AI M : Capture the most

essential decisions of a

Why ML at all? ol

compromising on
safety, i.e. not
predicting spuriously.




Build a model:
Previous work
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Firewire (Abst)
Dataset : from
PRISM examples

X[0]
X[1]:

w

X[0] <= 148.5
gini = 0.332
samples = 645
value = [121, 11, 513]

Truy \i alké

X[1]<=4.5 L
gini = 0.227 glml— (105 ,

o Slam—p 627_ 0,0

value = [64, 11, 513] value = [57, 0, 0]

/

N\

glnl =0.0
samples = 11
value = [0, 11, 0]

X[1] <= 0.5 X[1] <= 5.5 1 .

gini = (.32 gini = 0.072 ACtI ons.
samples = 55 samples = 533 H

value = [44, 11,0] | | value = [20, 0, 513] move,round,tlme

gini = 0.0 o Ko gini = 0.0

samples = 44 q‘c’;m pIes - 36 samples = 447
value = [44, 0, 0] value = [20, 0, 66] value = [0, 0, 447]
gini = 0.0 gini = 0.0
samples = 66 samples = 20
value = [0, 0, 66] value = [20, 0, 0]
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Now our model
is Inductive
Logic
Programming

Domain Knowledge
ILP Included

Rules

When this, do

this....

(readable)

Machine
Learning
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For Starters :
Inductive Logic Programming
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Deductive vs Inductive?

. Hypothesis: All Girls are Smart



Deductive vs Inductive?

INDUCTIVE

“Inducing” General
hypothesis from Specific
Details

Indeed, Machine
Learning in some
sense..
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-> Has literals in the body as less as possible
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For Starters: ILP ILP

What we have :

1. Background Knowledge (B) LOGIC
2. Set of Positive Examples (E+) PROGRAMMING
3. Set of Negative Examples (E-)

What we want:

A Hypothesis which is “good”.
-> Maximises the number of positive examples satisfied
-> Does NOT satisfy any negative examples

-> Has literals in the body as less as possible
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car(car 51). car(car 52). car(car 53).

car(car 61). car(car 62).

car(car 71). car(car 72). car(car 73).

car(car 81). car(car 82).

car(car 91). car(car 92). car(car 93). car(car 94).
car(car _101). car(car 102).

shape(elipse). shape(hexagon). shape(rectangle). shape(u shaped).
shape(triangle). shape(circle). shape(nil).

train(eastl). train(east2). train(east3). train(east4). train(east5).

train(west6). train(west7). train(west8). train(west9). train(westl0).

% eastbound train 1
short(car 12).
closed(car 12).
long(car 11).

long(car 13).

short(car 14).

open car(car 11).

open car(car 13).

open car(car_14).
shape(car 11, rectangle)
shape(car 12, rectangle)
shape(car 13, rectangle)
shape(car 14, rectangle)
load(car 11, rectangle,3
load(car 12,triangle,1)
load(car 13,hexagon,1).
load(car 14,circle,1).
wheels(car 11,2). % 9,10
wheels(car 12,2).

wheels(car 13,3).

wheels(car 14,2).

has car(eastl,car 11). % 11,12
has car(eastl,car 12).

has car(eastl,car 13).

). %6,7,8

. % 4,5




leastbound (eastl).

eastbound(east2

eastbound(east4).
eastbound(east5).

( )

( )
eastbound(east3).

( )

( )

eastbound(west6) .
eastbound(west7).
)
)

eastbound(west9

(

(
eastbound(west8

(
eastbound(west10).




eastbouna :
has car(A,B), has car(A,C), has car(A,D), has car(A,E),
short(E), short(C closed(C), long(D),

1
long(B), open car(E), open car(D), open car(B),

shape(E, rectangle), shape(D,rectangle), shape(C,rectangle), shape(B,rectangle),
wheels(E,2), wheels(D,3), wheels(C,2), wheels(B,2),
load(E,circle,1l), load(D,hexagon,l), load(C,triangle,1l), load(B,rectangle,3).

A general hypothesis about eastbound trains, given the
background knowledge and positive and negative instances



Greedy search
along the lattice
of hypothesis

Most Specific Hypothesis (MSH)
for a positive example e



To play or not to play

[Rule 1] [Pos cover = 2 Neg cover

class(A,B) :-
not (outlook(A,rain),windy(A,true)), outlook(A,sunny), humidity(A,C), lteq(C,70),
random(B, [0.75-play,0.25-dont _play]).

[Rule 2] [Pos cover = 3 Neg cover = 0]

class(A,B) :-
not (outlook(A,rain),windy(A,true)), outlook(A,sunny), not (humidity(A,C),lteq(C,70)), random(
B,[0.8-dont play,0.2-play]).

[Rule 3] [Pos cover = 7 Neg cover = 0]
class(A,B) :-
not (outlook(A,rain),windy(A,true)), not outlook(A,sunny), random(B,[0.888889-play,0.111111-dont play]).

[Rule 4] [Pos cover = 2 Neg cover = 0]
class(A,B) :-
outlook(A,rain), windy(A,true), random(B,[0.75-dont play,0.25-play]).




In the context
of strategies..



Cruise Control

Front

Ego is controlled by us Front is environment controlled :
"given to us"

The goal of the adaptive cruise control in Ego is

1. To stay safe (by keeping the distance between the cars
greater than a given safe distance) SAFETY

2. Todrive as close to Front as possible. OPTIMALITY



Cruise Control

Front

Ego is controlled by us Front is environment controlled :
"given to us"

e B : Equations of Motion
e E+: When to accelerate
e E-: When to not accelerate



X[0] <= 148.5
gini = 0.332
samples = 645
value = [121, 11, 513]

TmV

X[1]<=45
gini = (0.227
samples = 588
value = [64, 11, 513]

VAN

\Ii\l se

gini = 0.0
samples = 57
value = [57, 0, 0]

X[1]<=0.5
gini = .32
samples = 55
value = [44, 11, 0]

X[1]<=5.5
gini= 0.072
samples = 533
value = [20, 0, 513]

gl

EN

gini = 0.0
samples = 11
value = [0, 11, 0]

gini = 0.0
samples = 44
value = [44, 0, 0]

X[0] <= 65.5

gini = 0.357

samples = 86
value = [20, 0, 66]

gini = 0.0
samples = 447
value = [0, 0, 447]

/

N\

gini = 0.0
samples = 66
value = [0, 0, 66]

gini = 0.0
samples = 20
value = [20, 0, 0]

firewire_abst_10_ p
firewire_exported_d

x final_results.txt

[theory]

[Rule 1] [Pos cover = 55 Neg cover = 0]
class(A,B) :-
variab(A,C), lteq(C,148), state(A,D), lteq(
DI4)I
random(B, [0.775862068965517-move,0.20689655172
4138-round,0.0172413793103448-time]) .

[Rule 2] [Pos cover = 533 Neg cover = 0]
class(A,B) :-
variab(A,C), lteq(C,148), not (state(A,D),lteq
(D,4)), random(B,[0.958955223880597-time,0.039
1791044776119-move,0.00186567164179104-round])

[Rule 3] [Pos cover = 57 Neg cover = 0]
class(A,B) :-
not (variab(A,C),lteq(C,148)), random(B,[0.966
666666666667 -move,0.0166666666666667 - round, 0.0
166666666666667-time]) .

[Training set performance]
Actual

+
+ 645
Pred
- 0

645

Accuracy = 1.0
[Training set summary] [[645,0,0,0]]
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For Starters: ILP

What we have : Towar'ds a
<—T__Background Knowledge (B]_ — SUCCj_nCt

2. Set of Positive Examples (E+) .

3. Set of Negative Examples (E-) l"epl"esentatlon

What we want: r?

A Hypothesis which is “good”: YOU- deCj.de the

rryl
-> Maximises the number of positive examples satisfyt-jocabll]'a *

-> Does NOT satisfy any negative examples

(Has literals in the body as less as poss@




Decision Tree

Accuracy on

Dataset Leaves ILE Rules Training Set
Cruise 2 68 130 100%
Firewire 14 3 100%

A smaller sample of 5000 points.




Dataset Decision Tree ILP Rules Acc.ur.acy on

Leaves Training Set
Cruise 68 130 100%
Firewire 14 3 100%

A smaller sample of 5000 points.

Student Research Competition,
International ACM Conference on Automated Software Engineering (ASE 2019)




Simulating Custom Decision
Tree Strategy in PRISM



. v B 3 m(80%) # 12

PRISM Model File: <Untitled=>

%€ Model: <Untitled> NEE
® Type: <Unknown=> B’

Look In: |Uabst v| @@@ @

[ deadline.nm

[ firewire.nm

File Name: [firewire.nm J

Files of Type: | PRISM models (¥ prism, * pm, +.nm, *.sm) ~|

Cancel

Built Model
States: 7
Initial states: ?
Transitions: ?

Welcome to PRISM...




Look In: |[C] abst v

D deadline.nm

D firewire.nm

File Name: [firewire.nm

Files of Type: | PRISM models (*.prism, *.pm, *.nm, *.sm) v

Open Cancel




/ Integer semantics version of abstract firewire protocol
!’/ gxn 23/05/2001

ndp

'/ wire delay
const int delay;

/ probability of choosing fast and slow
const double fast;
const double slow = 1-fast;

/ largest constant the clock of the system is compared to

const int kx = 167;

nodule abstract_firewire

// clock

x o [0, kx+l];
// local state
s : [0..9];

// @ -start_start
// 1 -fast_start
// 2 -start_fast
// 3 -start_slow
// 4 -slow_start
// 5 -fast_fast
// 6 -fast_slow
// 7 -slow_fast
// 8 -slow_slow
// 9 -done

// Initial state

[time] s=0 & x<delay -> (x'=min(x+1,kx+1));
[round] s=0 -> fast : (s'=l) + slow : (s'=4);
[round] s=0 -> fast : (s'=2) + slow : (s'=3);
// fast_start

[time] s=1 & x<delay -> (x'=min(x+1,kx+1));

[1 s=1 -> fast : (s'=5) & (x'=0) + slow : (s'=6) & (x'

// start_fast
[time] s=2 & x<delay -> (x'=min(x+1,kx+1));

[1 s=2 -> fast : (s'=5) & (x'=0) + slow : (s'=7) & (x'

// start_slow
[time] s=3 & x<delay -> (x'=min(x+1,kx+1));

[1 s=3 -> fast : (s'=6) & (x'=0) + slow : (5'=8) & (x'=

// slow_start
[time] s=4 & x<delay -> (x'=min(x+1,kx+1));

[1 s=4 -> fast : (s'=7) & (x'=0) + slow : (s'=8) & (x'

// fast_fast

[time] s=5 & (x<85) -> (x'=min(x+1,kx+1));
[1 s=5 & (x>=76) -> (s5'=0) & (x'=0);

[1 s=5 & (x>=76-delay) -> (s'=9) & (x'=0);
// fast_slow

[time] s=6 & x<167 -> (x'=min(x+1,kx+1));
[1 s=6 & x>=159-delay -> (s'=9) & (x'=0);
// slow_fast

[time] s=7 & x<167 -> (x'=min(x+1,kx+1));
[1 s=7 & x>=159-delay -> (s'=9) & (x'=0);
// slow slow



x Define Constants







num nodes=11

num classes=3
depth=4

node lc rc predicate/action
1 10 X0<=148.5
2 5 X1<=4.5

3 4 X1<=0.5

-1 -1 round

-1 -1 move

6 9 X1<=5.5

7 8 X0<=65.5
-1 -1 time

-1 -1 move

-1 -1 time

10 -1 -1 move
num features=2
X0 : X

X1:s

0
1
2
3
4
5
6
7
8
9




file Edit Model Properties Simulator Log Options

bl ed B | =

Automatic exploration

Manual exploration

| Custom Strategy S... ] ‘ Q Simulate

Steps v ’1—

! Backtracking

| & Backtrack

|Steps " |1

av

Module/[action]

Probability

-a

Update

» [time]

1.0

%

Decision tree

Path -

abstract firewire

Rewards |
[ "rounds" ] |

Action

Step

[ "time" ]

0

1

[round]
abstract firewire

N = o %

N s ola

0
?

Simulator

oading model... done.




le Edit Model Properties Simulator Log Options

AR =

Automatic exploration

v a

[ Custom Strategy S... | ‘ & simulate

Steps > ’1—

Backtracking

[ & Backtrack

‘ Steps

Path-

Action

[round]
abstract_firewire
[time]

Simulator

wln=o|%
N slo|m

ading model... done.






https://docs.google.com/file/d/1hItn7ytrtB9e8skSkeM9XNrenxGqhtFz/preview

Real Life System

+ Specifications conat Dc;_c:s:on
R rees

cond2 cond3
Testing, Validation..
Safety is l I 9,
critical T -

;(Model + Properties)é_ [Controller\

............................................................. Strategy Domain Knowledas
Simulating the ILP ’gz’;ged
system and ‘ _
visualising the (} ' 31”_79" this, do
strategy IS.... .
simultaneously ZAN " 9 (readable)  Machine
\_ ) Learning
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