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 We study parameterized problems for this class.
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Immediate Observation Nets

d1

example:

/ (q1-91) + (g1, 9>)

A Petri net is an 10 net if all its
transitions are of the form

(qS > QO) = (qa’ ’ qo)

D transition

place
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Unlike for conservative Petri nets!

Application: the correctness problem for 10 population
protocols is PSPACE-complete
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The Pruning Theorem

bunch = multiset of trajectories with same start and finish

/ / trajectory
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Bringing it together

CC-reachability can be solved in PSPACE.

Algorithm sketch:
Let S and S’ two counting sets.
S’ is reachable from S if and only if S N pre*(S’) # ()

If it is non-empty, there exists a “small” marking in the
intersection.

We pick such a marking in S and such a marking in S’, and
then guess a path from one to the other.
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