Parameterized Analysis of Immediate Observation Petri Nets

Chana Weil-Kennedy joint work with Javier Esparza and Mikhail Raskin

Introduction

• We introduce immediate observation Petri nets.

Introduction

We introduce immediate observation Petri nets.

They are of interest in the study of population protocols

and chemical reaction networks.

Introduction

We introduce immediate observation Petri nets.

They are of interest in the study of population protocols

and chemical reaction networks.

• We study parameterized problems for this class.

Are there at least 10 researchers here that have published in Petri Nets?

 $1 \le n < 10$

Are there at least 10 researchers here that have published in Petri Nets?

 $1 \le n < 10$

Are there at least 10 researchers here that have published in Petri Nets?

 $0 \le n < 10$

Immediate Observation Nets

Immediate Observation Nets

Immediate Observation Nets

Parameterized Problems

Parameterized problems in the number of agents (population protocols) or molecules (enzymatic chemical networks)

Parameterized Problems

Parameterized problems in the number of agents (population protocols) or molecules (enzymatic chemical networks)

does an infinite set of Petri nets differing only in their initial markings satisfy a given property?

Parameterized Problems

Parameterized problems in the number of agents (population protocols) or molecules (enzymatic chemical networks)

does an infinite set of Petri nets differing only in their initial markings satisfy a given property?

defined by counting constraints

Counting Constraints

$$2 \le x_1 \le \infty$$
$$2 \le x_2 \le \infty$$

Counting Constraints

Results

Reachability, coverability and liveness are **PSPACE-complete**

Results

Reachability, coverability and liveness are **PSPACE-complete**

CC-reachability, CC-coverability and CC-liveness are **also PSPACE-complete**

Unlike for conservative Petri nets!

Results

Reachability, coverability and liveness are **PSPACE-complete**

CC-reachability, CC-coverability and CC-liveness are **also PSPACE-complete**

Unlike for conservative Petri nets!

<u>Application</u>: the correctness problem for IO population protocols is **PSPACE-complete**

How

Express our problems as **formulas over counting constraints** using boolean operators and reachability operators

e.g.
$$S \cap pre^*(S') \neq \emptyset$$

How

Express our problems as **formulas over counting constraints** using boolean operators and reachability operators

e.g.
$$S \cap pre^*(S') \neq \emptyset$$

Show closure of counting constraint under these operators

Show that the "size" of the counting constraints remains reasonable

How

Express our problems as **formulas over counting constraints** using boolean operators and reachability operators

e.g.
$$S \cap pre^*(S') \neq \emptyset$$

Show closure of counting constraint under these operators

Show that the "size" of the counting constraints remains reasonable

using the **Pruning Theorem**

For any run

$$M \xrightarrow{*} M' \ge M''$$

there exists a run

$$S \xrightarrow{*} S' \ge M''$$

For any run

$$M \xrightarrow{*} M' \geq M''$$

there exists a run

$$S \xrightarrow{*} S' \ge M''$$

$$|S| \leq |M''| + n^3$$

An IO transition is

$$(q_s, q_o) \mapsto (q_d, q_o)$$

An IO transition is

$$(q_s, q_o) \mapsto (q_d, q_o)$$

An IO transition is

$$(q_s, q_o) \mapsto (q_d, q_o)$$

An IO transition is

$$(q_s, q_o) \mapsto (q_d, q_o)$$

An IO transition is

$$(q_s, q_o) \mapsto (q_d, q_o)$$

For any run

$$M \xrightarrow{*} M' \geq M''$$

there exists a run

$$S \xrightarrow{*} S' \ge M''$$

such that

$$|S| \le |M''| + n^3 \qquad \text{of size } n$$

 n^2 bunches

Bringing it together

Theorem

For *N* an IO net with *n* places, for *S* a counting set, there exists counting constraints representing *pre*(S)* and *post*(S)* whose size is bound by

$$||pre^*(S)|| \le ||S|| + n^3$$

$$||post^*(S)|| \le ||S|| + n^3$$

Bringing it together

Theorem

For *N* an IO net with *n* places, for *S* a counting set, there exists counting constraints representing pre*(S) and post*(S) whose size is bound by

$$||pre^*(S)|| \le ||S|| + n^3$$

$$||pre^*(S)|| \le ||S|| + n^3$$

 $||post^*(S)|| \le ||S|| + n^3$

contains markings with "small" number of agents

Bringing it together

CC-reachability can be solved in PSPACE.

Algorithm sketch:

Let S and S' two counting sets.

S' is reachable from S if and only if $S \cap pre^*(S') \neq \emptyset$

If it is non-empty, there exists a "small" marking in the intersection.

We pick such a marking in S and such a marking in S', and then guess a path from one to the other.

• The problems of CC-coverability and CC-liveness are reduced to CC-reachability.

 The problems of CC-coverability and CC-liveness are reduced to CC-reachability.

 The PSPACE-hardness results come from reductions from the halting problem for bounded-tape Turing Machines.

 The problems of CC-coverability and CC-liveness are reduced to CC-reachability.

 The PSPACE-hardness results come from reductions from the halting problem for bounded-tape Turing Machines.

 The correctness problem for IO population protocols is also reduced to CC-reachability.

 The problems of CC-coverability and CC-liveness are reduced to CC-reachability.

 The PSPACE-hardness results come from reductions from the halting problem for bounded-tape Turing Machines.

 The correctness problem for IO population protocols is also reduced to CC-reachability.

Thank you!

Application

Correctness of IO protocols can be solved in PSPACE.

A population protocol computes a predicate if and only if

every run starting in an initial configuration eventually reaches a configuration in which everyone agrees on the same output and does so forever

Application

Correctness of IO protocols can be solved in PSPACE.

A population protocol computes a predicate

if and only if

every run starting in an initial configuration eventually reaches a configuration in which everyone agrees on the same output and does so forever

$$post^*(\mathcal{I}) \subseteq pre^*(\mathcal{ST}_0 \cup \mathcal{ST}_1)$$

 \mathcal{I} the initial configurations

$$\wedge$$

$$pre^*(\mathcal{ST}_0) \cap pre^*(\mathcal{ST}_1) \cap \mathcal{I} = \emptyset$$

 $\mathcal{ST}_{m{b}}$ the stable b-consensus configurations for $b \in \{0,1\}$