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Immediate Observation Nets

d1

example:

/ (q1-91) + (g1, 9>)

A Petri net is an 10 net if all its
transitions are of the form

(ps > po) = (pd > po)
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Immediate Observation Nets

* we call marking a configuration of the IO net
* arun is a sequence of valid transitions

* each immediate observation population protocol has an
underlying Petri net - this net is an 10 net
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does an infinite set of Petri nets differing only in their initial
markings satisfy a given property ?

We concentrate on infinite sets defined by counting constraints.
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Results

 Cube-reachability, cube-coverability and cube-liveness in
O nets are PSPACE-complete ... even though they are
already PSPACE-hard for singleton sets of markings

This is in strong contrast with more general Petri net classes
like 1-conservative nets: these problems are PSPACE for
singletons, but as hard as for general Petri nets for cubes.

* Application: the correctness problem for IO population
protocols is PSPACE-complete



How

We use
e a fundamental technique: pruning

e a useful representation: counting constraints
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The Pruning Theorem

bunch = multiset of trajectories with same start and finish
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History = the trajectories of the different tokens in a run
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Bringing it together

Bound on the size of the reachability sets

For N an 10 net with n places, for S a counting set, there
exists counting constraints representing pre*(S) and post*(S)
whose size is bound by

lpre*(S)I < [ISI| + n”

post(S)|| < |IS]| + n>



Bringing it together

Cube-reachability can be solved in PSPACE
Algorithm idea: Let S and S’ two counting sets.

If S’ is reachable from S, then S N pre*(§’) is not empty.

By the previous theorem (and other results), there exists a
“small” marking in S N pre*(S’).

We pick such a marking in S and such a marking in S’, and
then guess a path from one to the other.



Conclusion

* This entails the results for cube-coverability and cube-
liveness in |O nets.

* The PSPACE algorithm is also induced by the cube-
reachability algorithm and the fact that protocol
correctness can be expressed a formula over counting
sets of markings in the corresponding IO net.

e The PSPACE-hardness results come from reductions from
the halting problem for bounded-tape Turing Machines.
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