## Computing the Expected Execution Time of Probabilistic Workflow Nets

Philipp Meyer

TACAS 2019

Technical University of Munich

Joint work with Javier Esparza and Philip Offtermatt



### Introduction

#### Workflow nets

- Represent cases, i.e. life-cycles of process instances.
   Used for business processes or healthcare processes.
- Back-end for BPMN, EPC or UML Activity Diagrams.
- Describe tasks of the case and their causal order.
   May have information about task execution costs and times.



### Introduction

#### Workflow nets

- Represent cases, i.e. life-cycles of process instances.
   Used for business processes or healthcare processes.
- Back-end for BPMN, EPC or UML Activity Diagrams.
- Describe tasks of the case and their causal order.
   May have information about task execution costs and times.

#### Analysis questions (for time)

- What is the expected time for completion of one case?
- $\bigcirc$  What is the probability meeting a given deadline?

### Example: Workflow of a tax return







Review of income and deductions is done *concurrently*.



○ Review of income and deductions is done *concurrently*.

○ After reviewing deductions, there is a *choice*.



- Review of income and deductions is done *concurrently*.
- After reviewing deductions, there is a choice.
- Choice is weighted by *probabilities*.



- Review of income and deductions is done *concurrently*.
- After reviewing deductions, there is a choice.
- Choice is weighted by *probabilities*.
- Task transitions have *execution times*.

### Example: Abstract workflow net of a tax return



Timed Probabilistic Workflow Net (TPWN)

 $\bigcirc$  A *run* of the net is an execution starting in *i* and ending in *o*.

 $\bigcirc$  The net is *sound* if every execution eventually ends in *o*.

○ We assume *1-safe* nets, i.e. each place has at most one token.









 $t_1$ 







Run: $t_1$  $t_2$  $t_3$  $t_7$  $t_4$ Probability: $\frac{1}{5}$ 

Time:



Run: $t_1$  $t_2$  $t_3$  $t_7$  $t_4$  $t_6$ Probability:1/5

Time:





Run:  $t_1 t_2 t_3 t_7 t_4 t_6 t_3 t_5$  Probability:  $\frac{1}{5} \cdot \frac{4}{5}$ 

Time:



Run:  $t_1 t_2 t_3 t_7 t_4 t_6 t_3 t_5 t_8$  Probability:  $\frac{1}{5} \cdot \frac{4}{5}$ 

Time:



### Semantics of timed probabilistic workflow nets

Semantics of TPWN defined by Markov decision process (MDP):

- Black nodes are markings, white nodes are conflict sets.
- Fixing a scheduler yields a Markov chain.
- Expected time then given by exp. time to reach o from i.
- Time of executions given by maximum of concurrent and sum of sequential task times.



### Computing the expected time: problems

#### Problem 1

Expected time may be *dependent* on the scheduler.

#### Problem 2

Unclear how to compute expected time, even for a fixed scheduler, as times are *not* purely *additive*.

This is in contrast to expected *cost* of a net.

#### Problem 3 [Botezatu, Völzer, Thiele, BPM'16]

Given a *free-choice* TPWN and a number *k*, deciding if the expected time exceeds *k* is *NP-hard* (requires times in *binary*).

### Computing the expected time: contributions

#### Theorem

Given a *confusion-free* TPWN, the expected time is *independent* of the scheduler.

#### Theorem

By fixing a certain "earliest-first" scheduler, the expected time can be computed from a finite exponentially-sized Markov chain with *additive times*.

#### Theorem

Given a *free-choice* TPWN where all *times* are 0 or 1 and all probabilities 1 or 1/2, computing the expected time is #P-hard.

### Confusion-free and free-choice nets



- Difficulty in resolving conflicts.
- Several semantics for time, unintuitive.
- No interference of concurrency and conflicts.
- Semantic property, PSPACE-hard.

Syntactic property.

t<sub>2</sub>

Implies confusion-freeness.

### Free-choice workflow nets

- Workflow graphs are the core of BPNM 2.0 and translate into (and are essentially equivalent to) free-choice workflow nets.
- Of *2000* workflow nets (IBM, SAP): almost *1400* are free-choice.
- Many properties of free-choice workflow nets decidable in polynomial time: soundness, reachability, expected cost, ...



#### Theorem

Given a confusion-free TPWN, the expected time is independent

of the scheduler.

Further, the expected time is finite iff the net is sound.

#### Proof.

By adapting proof of independence of scheduler for expected cost [Esparza, Hoffmann, Saha, Perform. Eval. '17].

○ We can fix a scheduler to obtain a Markov chain.

○ Still unclear how to compute expected time from chain.

### Computing the expected time

#### Theorem

Given a confusion-free TPWN, the expected time can be computed in single exponential time.

#### Proof.

By "earliest-first" scheduler with finite memory yielding an exponentially-sized Markov chain with local additive times.





Time:











4 5

Time: 0+3















Time: **0**+**3**+**0**+**0**+**2** 





Time: 0+3+0+0+2





Run:  $t_1 t_2 t_3 t_7 t_4 t_6$ Time: 0+3+0+0+2+0





Time: 0+3+0+0+2+0+4









Time: 0+3+0+0+2+0+4+2





Time: 0+3+0+0+2+0+4+2





Time: 0+3+0+0+2+0+4+2+0=11





Run:  $t_1 t_2 t_3 t_7 t_4 t_6 t_3 t_5 t_8$ Time: 0+3+0+0+2+0+4+2+0=11





 $\mathsf{ExpectedTime} = \mathsf{ExpectedReward}(i 
ightarrow o) = 8.9$ 

### Lower bound for complexity of computing the expected time

#### Theorem

Computing the expected time of a sound and acyclic free-choice TPWN where all times are 0 or 1 and all probabilities are 1 or  $^{1\!/2}$  is #P-hard.

#### Proof.

Reduction from expected duration of stochastic PERT network.  $\Box$ 

- #P-hard: allows reduction from #SAT, i.e. counting the number of satisfying assignments for a boolean formula.
- $\bigcirc$  Computing an  $\epsilon$ -approximation is also #P-hard.
- Computing the probability that that the expected time exceeds a given number is also #P-hard.

### Comparison of complexities

Complexity of different problems for 1-safe workflow nets.

| Free-choice<br>P <sup>[1]</sup><br>$\mathcal{O}(1)$ (yes) |  |  |  |  |
|-----------------------------------------------------------|--|--|--|--|
| P <sup>[1]</sup><br><i>O</i> (1) (yes)                    |  |  |  |  |
|                                                           |  |  |  |  |
|                                                           |  |  |  |  |
| Choice                                                    |  |  |  |  |
| Free-choice                                               |  |  |  |  |
| P <sup>[3]</sup><br><b>#P-hard</b>                        |  |  |  |  |
|                                                           |  |  |  |  |

[1] van der Aalst '96 [2] Liu et al. '14 [3] Esparza et al. '17

### Experimental evalation

- Implemented as package in **ProM** (Process Mining framework).
- $\odot$  Evaluated on 642 sound and free-choice workflow nets from IBM.

| Net           | Cyclic | Places | Transitions | Reach. Markings  | Analysis time | Size of MC |
|---------------|--------|--------|-------------|------------------|---------------|------------|
| m1.s30_s703   | no     | 264    | 286         | 6117             | 43.8 ms       | 347        |
| m1.s30_s596   | yes    | 214    | 230         | 623              | 23.6 ms       | 234        |
| b3.s371_s1986 | no     | 235    | 101         | $2\cdot 10^{17}$ | 16.5 ms       | 102        |
| b2.s275_s2417 | no     | 103    | 68          | 237626           | 15.9 ms       | 431        |

• Evaluation on net from BPI Challenge 2017 for financial process.

| Discretization of task times  |      | Transitions | Exp. | Time | Size of MC | Analysis Time |
|-------------------------------|------|-------------|------|------|------------|---------------|
| Individual deterministic mean |      | 19          | 24 d | 1 h  | 33         | 40 ms         |
|                               | 12 h | 141         | 24 d | 18 h | 4054       | 244 ms        |
|                               | 6 h  | 261         | 24 d | 21 h | 15522      | 2.1 s         |
| Histogram discretization      | 4 h  | 375         | 24 d | 22 h | 34063      | 10 s          |
|                               | 2 h  | 666         | 24 d | 23 h | 122785     | 346 s         |
|                               | lh   | 1117        |      | _    | 422614     | memout        |

- $\, \odot \,$  Semantics for expected time of confusion-free workflow nets.
- Algorithm to compute expected time of a workflow net.
- $\bigcirc$  #P-hardness lower bound even for restricted net class.
- Efficient computation on large set of industrial examples.

# Thank you!