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Humble Beginnings

There is this neat
computation model
called 
'Population Protocols'.  

Maybe this could 
become your 
PhD topic, Stefan? 
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Simpol

2



A Challenge

We proved the 
well-specification
problem is decidable!

🙂🙂🙂🙂🙂🙂🙂🙂🙂🙂🙂
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A Challenge

We proved the 
well-specification
problem is decidable!

🙂🙂🙂🙂🙂🙂🙂🙂🙂🙂🙂

But the decision 
procedure is 
practically useless...

😢😢😢😢😢😢😢😢😢😢
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A Challenge

...maybe there is 
a simple syntactic 
restriction that 
guarantees well-
specification? 

The majority of 
protocols I know are 
terminating in a 
peculiar manner...
...maybe we can
exploit this? 
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A Challenge

Most protocols seem
to progress in phases.

    Consider Majority:

There is a 'cancellation'
phase:   A, B -> a, b

...and there is a 'domination'
phase:   A, b -> A, a
             B, a -> B, b

...and a 'tie-breaker' phase:
              a, b -> b, b
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A Challenge

Maybe we can 
characterize phases 
syntactically and 
automatically derive 
Termination &
Well-Specification?
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A Challenge

Identify a natural class of protocols satisfying

# Termination:
Every fair execution terminates.

# (Well-Specification | Termination):
All terminal configurations reachable from any given initial
configuration form the same consensus.

Class should be fully expressive + membership test should be
feasible!
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Three Shades of Termination

There are different shades of Termination:

# Termination irrespective of start configuration or fairness.

# Fair Termination irrespective of start configuration.

# Fair Termination starting in initial configuration.

9



Structural Termination/Strong Normalization

A protocol is structurally terminating if every computation step
makes progress:

Structural Termination
There exists a well-founded partial order (�) such that for all
configurations C , C′:

C −→ C′ �⇒ C′ ≺ C.

Structural termination is a very strong assumption!
It implies that even unfair runs terminate, irrespective of where
they started.
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Bad News

Not even the simple Majority protocol satisfies
Structural Termination:

The tie-breaker a, b −→ b, b can reverse progress made by

A, b −→ A, a.

Maybe we can ’tame’ Majority, so that it becomes
structurally terminating? - Possible, and leads to
faster Majority, but does not generalize well.
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Structural Termination: Tractibility

Aren't population protocols
*just* 
Petri nets?

Structural Termination is decidable for Petri nets in PTIME.
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Structural Termination: Diamond Lemma

Aren't population protocols
*just* 
multi-set rewrite systems?

A structurally terminating multi-set rewrite system is confluent iff.
it is locally confluent.
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Confluence

Local Confluence Confluence

**

* *

Structural Termination +
Local Confluence +

(Terminal implies Consensus)

�⇒Well-Specified
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From Structural Termination to Layered Termination

Structural Termination is too demanding!

But maybe we can partition transitions into ’phases’, where each
phase is structurally terminating, and succeeding phases do not
re-enable previous phases?

We call the phases layers: Layered Termination.
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Deciding Confluence becomes infeasible

If we abandon Structural Termination, then the diamond lemma is
no longer applicable.

The general local criterion for confluence is quite involved!
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A closer look at Well-Specification

(Well-Specification | Termination):

All terminal configurations reachable from any given initial
configuration form the same consensus.

Maybe we do not need exact reachability, but some
sufficiently refined overapproximation will do the trick?
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Overapproximating Reachability

Aren't population protocols
*just* 
Petri nets?

Petrinizer to the rescue!
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Overapproximating Reachability

[CAV’14] Esparza, Ledesma-Garza, Majumdar, PJ Meyer

An SMT-based Approach to Coverability Analysis

Petrinizer over-approximates reachability relation of Petri nets.
Approximation can be refined in refinement steps.
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Peregrine

 [PODC’17] Blondin, Esparza, Jaax, PJ Meyer Towards efficient
Verification of Population Protocols

 [CAV’18] Blondin, Esparza, Jaax Peregrine: A Tool for the
Analysis of Population Protocols
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Peregrine

Peregrine
peregrine.model.in.tum.de

Tool for
# Design
# Parameterized Verification
# Simulation

of Population Protocols.
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Demo

DEMO
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Towards a verifiable class

Search for subclass of class WS of well-specified protocols that:

# Has a membership test of reasonable complexity.
# Can compute all Presburger predicates.
# Naturally contains common protocols.
# Is suitable for verification of correctness.
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Towards a verifiable class: WS2

# Many protocols are silent: fair executions always reach a
terminal configuration where no state-changing transitions are
enabled.

# Easier test if consensus is reached.
# Protocols have same expressiveness.
# Petri net reachability still reducable to membership problem

for class WS2 of well-specificed silent protocols.
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Towards a verifiable class: WS3

Original Property

Silent
For every initial C0:

C0
∗−→ C′ �⇒

∃ terminal C⊥ : C′ ∗−→ C⊥

Well-specified | Silent
All terminal configs reachable
from init. C0 form same
consensus.

Approximation

Layered Termination
For every config C:
∃ terminal C⊥ : C ∗−→ C⊥

due to universal termination
strategy (of a certain form).

Strong Consensus
All terminal configs potentially
reachable from init. C0 form
same consensus.
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Layered Termination

A protocol satisfies layered termination if there is a partition

T = T1 ∪ T2 ∪ . . . ∪ Tn−1 ∪ Tn

of T in n layers such that for every configuration C:

# each layer is structurally terminating, i.e. all executions from C
using transitions from a single layer are finite.

# if all transitions of T1 , . . . , Ti are disabled at C, then they
cannot be re-enabled by any transitions of Ti+1 , . . . , Tn.

If there is such a partition, then there is always a layered execution

C
T∗1−→ C1

T∗2−→ . . .
T∗n−→ C⊥

such that C⊥ is terminal. Therefore the protocol is silent.
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Deciding Structural Termination

A layer Ti is structurally terminating if there exists a partial order �
such that for every configuration C and every C

t−→ C′ with t ∈ Ti :

C′ ≺ C

We have that � can be given by a linear ranking function r:

C′ ≺ C ⇔ r(C′) < r(C) where r(C) def
=

∑
q∈Q

rqC(q) for some {rq}q∈Q ⊆ Q≥0

Then Ti is structurally terminating if there exist {rq}q∈Q such that for
every transition t ∈ Ti :

r(post(t)) < r(pre(t))
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Deciding Layered Termination

To decide layered termination:

# Guess partition of layers.
# Check that each layer is structurally terminating

(compute coefficients of r in polynomial time)
# Test whether layers cannot re-enable previous layers

(syntactic criterion given by the transition function)

⇒ NP decision procedure
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Towards a verifiable class: WS3

Original Property

Silent
For every init. C0:

C0
∗−→ C′ �⇒

∃ terminal C⊥ : C′ ∗−→ C⊥

Well-specified | Silent
All terminal configs reachable
from init. C0 form same
consensus.

Approximation

Layered Termination
For every config C:
∃ terminal C⊥ : C ∗−→ C⊥

due to universal termination
strategy (of a certain form).

NP

Strong Consensus
All terminal configs potentially
reachable from init. C0 form
same consensus.
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Strong Consensus

Idea: Replace reachability by cruder relation called potential
reachability:

Reachability �⇒ Potential Reachability

C
∗−→ C′ �⇒ C ∗

99K C′

Potential Reachability 6�⇒ Reachability

Potential reachability should be easiliy checkable, e.g. by set of
linear constraints, but still give a good approximation.

30



Strong Consensus

Idea: Replace reachability by cruder relation called potential
reachability:

Reachability �⇒ Potential Reachability

C
∗−→ C′ �⇒ C ∗

99K C′

Potential Reachability 6�⇒ Reachability

Potential reachability should be easiliy checkable, e.g. by set of
linear constraints, but still give a good approximation.

30



Potential Reachability: First Attempt

Let C , C′ be configurations s.t. C
t1 ...tm−−−−→ C′ for some t1 , . . . , tm.

Let x(t) = #occurences of t in t1 . . . tm.

C , C′, x satisfy the state equation:

C′ = C +Σt∈T (post(t) − pre(t)) · x(t)

where
t : q1 , q2︸︷︷︸

pre(t)

7→ r1 , r2︸︷︷︸
post(t)

.

The state equation disregards the order of execution. It only
considers the net effect of transitions!
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Potential Reachability: Example

Majority

t1 : A, B 7→ a, b
t2 : A, b 7→ A, a
t3 : B, a 7→ B, b
t4 : a, b 7→ b, b

C = {A, B} t1−→ {a, b} t4−→ {b, b} = C′
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Potential Reachability

First Approximation to Reachability
C′ is potentially reachable from C if there exists a counting vector
x : T 7→ N s.t. C , C′, x is a solution to the state equation:

C′ = C +Σt∈T (post(t) − pre(t)) · x(t)

Satisfaction of the state equation is too crude, even for simple
protocols: Too many false negatives for the well-specification
problem.
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Potential Reachability: Example

Majority

t1 : A , B 7→ a, b
t2 : A , b 7→ A , a

t3 : B, a 7→ B, b

t4 : a, b 7→ b, b

C = { A , B} t1−→ {a, b }9 {a, a} = C′

Once an agent is in one of the states {A, b},
there will always be an agent in one of the
the states {A, b}.

{A, b} is called a trap of the protocol.
Dually, sets of states that stay empty, once
they are emptied, are called siphons. Here,
{A, B} is a siphon.

Solution: Add constraints for traps and siphons!

35



Potential Reachability: Example

Majority

t1 : A , B 7→ a, b
t2 : A , b 7→ A , a

t3 : B, a 7→ B, b

t4 : a, b 7→ b, b

C = { A , B} t1−→ {a, b }9 {a, a} = C′

Once an agent is in one of the states {A, b},
there will always be an agent in one of the
the states {A, b}.
{A, b} is called a trap of the protocol.

Dually, sets of states that stay empty, once
they are emptied, are called siphons. Here,
{A, B} is a siphon.

Solution: Add constraints for traps and siphons!

35



Potential Reachability: Example

Majority

t1 : A , B 7→ a, b
t2 : A , b 7→ A , a

t3 : B, a 7→ B, b

t4 : a, b 7→ b, b

C = { A , B} t1−→ {a, b }9 {a, a} = C′

Once an agent is in one of the states {A, b},
there will always be an agent in one of the
the states {A, b}.
{A, b} is called a trap of the protocol.
Dually, sets of states that stay empty, once
they are emptied, are called siphons. Here,
{A, B} is a siphon.

Solution: Add constraints for traps and siphons!

35



Trap/Siphon Constraints

Let P ⊆ Q be a set of states

Definition (Trap)
P is a trap: Every transition that removes an agent from P also
moves an agent into P:

∀t ∈ T : pre(t) ∩ P , ∅ �⇒ post(t) ∩ P , ∅

∈ P t−→ ∈ P
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Trap/Siphon Constraints

Let P ⊆ Q be a set of states

Definition (Siphon)
P is a siphon: Every transition that moves an agent into P also
removes an agent from P:

∀t ∈ T : post(t) ∩ P , ∅ �⇒ pre(t) ∩ P , ∅

∈ P t−→ ∈ P
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Potential Reachability

C′ is potentially reachable from C if there is a counting vector x s.t.
C , C′, x is a solution to the state equation:

C′ = C +Σt∈T (post(t) − pre(t)) · x(t)

Moreover, the trap/siphon constraints must be satisfied for all
P ⊆ Q:

1. If P is a trap then we have:
C ∩ P , ∅ implies C′ ∩ P , ∅.

2. If P is a siphon then we have:
C ∩ P = ∅ implies C′ ∩ P = ∅.
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Potential Reachability: Finding traps and siphons

# Enumeration of all traps and siphons can be avoided:
Only check largest unmarked trap/siphon at C′/C
⇒ can be found in polynomial time given C and C′.

# However, implementation adds traps/siphons iteratively in
counter-example guided abstraction refinement loop.

# Additionally, finer refinements called U-traps and U-siphons
are used, depending on set U ⊆ T and support of x.
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Deciding Strong Consensus

A protocol satisfies strong consensus iff there exist no
configurations C0 , C1 , C2 and q1 , q2 ∈ Q such that

C0
∗
99K C1 ∧ C0

∗
99K C2 (reachability approximation)

init(C0) ∧ term(C1) ∧ term(C2) (configuration constraints)
O(q1) , O(q2) ∧ C1(q1) ≥ 1 ∧ C2(q2) ≥ 1 (different consensus)

Can be encoded as an SMT problem over linear integer arithmetic:
⇒ co-NP decision procedure
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Towards a verifiable class: WS3

Original Property

Silent
For every init. C0:

C0
∗−→ C′ �⇒

∃ terminal C⊥ : C′ ∗−→ C⊥

Well-specified | Silent
All terminal configs reachable
from init. C0 form same
consensus.

Approximation

Layered Termination
For every config C:
∃ terminal C⊥ : C ∗−→ C⊥

due to universal termination
strategy (of a certain form).

NP

Strong Consensus
All terminal configs potentially
reachable from init. C0 form
same consensus.

co-NP
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Deciding correctness within WS3

Given a Presburger predicate ϕ, a protocol in WS3 is correct w.r.t.
to ϕ iff there exist no configurations C0 , C1 such that

C0
∗
99K C1 (reachability approximation)

init(C0) ∧ term(C1) (configuration constraints)
ϕ(C0) , O(C1) (incorrect consensus)

Complexity depends on ϕ, but still in co-NP for quantifier-free
Presburger predicates with threshold and remainder.

Can be combined with constraints for strong consensus into a
single shared set of constraints.
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Towards a verifiable class: WS3

# Class WS3 of well-specified strongly silent protocols.
# Membership test in DP = {L1 ∩ L2 | L1 ∈ NP ∩ L2 ∈ co-NP}.
# Correctness test for WS3 protocols in co-NP.
# Can express all Presburger predicates

(by combination of threshold and remainder protocol).
# Protocols from the literature for Majority, Threshold,

Remainder, Flock of Birds etc. already belong to WS3.
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Counter-example generation

If either check for strong consensus or correctness fails, a potential
counter-example given by C0 , C1 , C2 is returned.

Actual reachability C0
∗−→ C1 and C0

∗−→ C2 can be checked by a
model checker:

# Reachable: genuine counter-example found.
# Unreachable: configurations can be excluded by additional

constraints and check repeated.
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Peregrine: A Verification Tool for Population Protocols

# Features of Peregrine:
◦ Allows specification of (parameterized) population protocols.
◦ Visualizations of randomly generated executions.
◦ Statistics generation of convergence speed until consensus.
◦ Automatic verification of well-specification and correctness in
the class WS3.

# Backend implemented in Haskell
◦ Call SMT solver Z3 to check well-specification and correctness.
◦ Call model checker LoLA to find counter-examples.
◦ Handles simulations for quantitative analysis.

# Web frontend using JavaScript
◦ Specification of protocols using graphical editor or python.
◦ Visualisation of simulations and simulation results.
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◦ Handles simulations for quantitative analysis.

# Web frontend using JavaScript
◦ Specification of protocols using graphical editor or python.
◦ Visualisation of simulations and simulation results.
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Conclusions

# Use of new class suitable for verification of correctness
# First tool for automatic and entirely parametric verification of

population protocols (for all initial population sizes!)
# Successful verification of existing protocols
# Interface for design and analysis of protocols

# Possible future work:
◦ Verification of non-silent protocols
◦ Strengthening of reachability approximation
◦ Diagnosis information when protocol is not strongly silent
◦ Synthesis of small protocols
◦ LTL model checking
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Thank you!


