Black Ninjas in the Dark:
Formal Analysis of Population Protocols

Javier Esparza

Joint work with Michael Blondin, Pierre Ganty, Stefan Jaax, Antonin
Kucera, Jérome Leroux, Rupak Majumdar, Philipp J. Meyer, and Chana
Weil-Kennedy

Technical
University
of Munich

European Research Council
Established by the European Commission



Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark




Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide by
majority to attack or not
(no attack if tie)




Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)




Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)




Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.



Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.



Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive



Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive

« Initially: all ninjas active, estimation = own vote.



Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.



Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.

Graphically:

- Initially more red ninjas =
eventually all ninjas red.

- Initially more blue ninjas or tie —-
eventually all ninjas blue.
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Majority protocol: Why?

- The first rule has no priority over the other

g apaee

NO CONSENSUS!
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Verification questions:

- How do | check +lat ny Pr‘o+0col is
correct ?

- How do | check +lat ny Pr-o+0col is
eflicient ?
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Expressivity questions:
- Are tlere PPO"LOCOIS Cor otler

Prob’ems?
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- And +le snallest eCCicient Pr-O'/'Ocol.?
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Population protocols: formal model  Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

- Configurations: Q — N

- Initial configurations: | — N

####
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Reachability graph for (3,2, 0,0):
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Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)
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Population protocols: runs

Run: infinite path from initial configuration
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Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol ill defined for C; (Sensei I's problem)
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Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate ¢ is correct if
it computes ¢ (in particular, correct
protocols are well specified)
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Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

« Exhibit PPs for and predicates

« Prove that computable predicates are closed under
negation and conjunction
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Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates
« Much harder!

« Dist. Comp.07 proof is “non-constructive”

- “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf/17



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

+ Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC'07
 Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput./08
» Protocols with failures Delporte-Gallet et al. DCOSS'06
« Trustful protocols Bournez, Lefevre, Rabie DISC'13

- Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS'11



Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |




Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)



Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Deper\cls on '/'L‘e PoPu[c:vLiOr\ size N



Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Depenc's on '/'L‘e PoPula+iOn size N

In a natural model: expected parallel time to

consensus satisfies

Time(n) = Inter(n)/n
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Every Presburger predicate is computable in O(nlog n)
time.

Angluin, Aspnes, Eisenstat Dist.Comp.’08

Every Presburger predicate is computable by protocols

in log®" n time.
Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest SODA’17

Every protocol computing majority takes Q(n) time.
Majority is computable in log®" n time by leaderless
protocols with O(log” n) states.
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Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

« Initially, sick ninjas @ IE\I
in state 1, healthy
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Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjais in a state

of {0,1,...,2¢ = 1,24

« Initially, sick ninjas in
state 1, healthy ninjas
in state 0

* (m,n)— (m+n,O0)
ifm+n<2°¢

* (m,n) = (24,2°)
ifm+n>2¢

« Each ninjaisina

state of {0,2°, ..., 2¢=1.24)

« Initially, sick ninjas in

state 27, healthy ninjas
in state 0

« (2M,2M) s (2M11)0)

ifm+1</

« (25,n) — (24,29

- Can be generalized to

non-powers of 2
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Not for every c....

Blondin, E., Jaax STACS'18
There exist infinitely many ¢ such that every protocol for
X 2 ¢ has at least (log€)"/* states
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Blondin, E., Jaax STACS'18

For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

- Mayr and Meyer '82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word « leading from sto t (i.e., t = s«) has
length |a| > 27"

+ Construct a protocol that “simulates” derivations in the
semigroup
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Succinctness

O(|Og log c) without leades? OPen
And O(logloglog e) with leaders?
OPQ’\

O(log |¢]) states For all 97 Open



Sensei lll's questions
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How Last can we compu+e +Len? }
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How can | cleck correctness? j
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Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

cight(z) = [ 1¢] if @ € StrongStates or = € WeakStates;
weght(x) =19 1 if z € IntermediateStates.

_ 1 ifz € {+0,14,...,11,3,5,...,m};
S22 ‘{ ~1 otherwise.

"

N

@

value(z) = sgn(z) - weight(x)
/* Functions for rounding state interactions */

4 §(z) = 1 ifx = —1;1; if = = 1;z, otherwise
5 R (k) = o(k if k odd integer, k — 1 if k even)
6 Ri(k) = o(k if k odd integer, k+ 1 if k even)
—1j41  ife = —1; for some index j < d
7 Shift-to-Zero(z) = { 1;51  if o= 1; for some index j < d

T otherwise.
oy 40 if sgn(z) > 0
8 S"’”'“"Z””(”’{ —0  oherwise.
9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (vume,(l.);ralm(u)) and y « Ry (u“tm,u);wm(u)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else y' « Shift-to-Zero(y) and z' « Sign-to-Zero(y)

15 elseif (x € {—1q,+14} and weight(y) = 1 and sgn(x) # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0

else
19 '+ Shift-to-Zero(x) and y'  Shift-to-Zero(y)



Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

eight(z) =  |¢1 1[@ € StrongSlates or & & WeakStates;
weghtlT) =\ 1 ife € IntermediateStates.

eg"(,):{ 1 ifz € {+0,1a,...,11,3,5,...,m}; HOW c.eN we Ver‘|p\7

-

N

—1 otherwise.

@

value (z) = sgn(z) - weight(z)

/* Functions for rounding state interactions */
4 ¢(z) = -1, if e = —1;1; if @ = L, otherwise
5 Ry (k) = ¢(k if k odd integer, k — 1 if k even) correcitness
6 Ri(k) = o(k if k odd integer, k + 1 if k even)

—1j41  ife = —1; for some index j < d

Shift-to-Zero(x) = { L ':)f”a“mwllégfm some index j < d au+o M&+‘ CG( 17 _?

+0 if sgn(z) > 0
0 oherwise.

<

8 Sign-to-Zero(x: :{

9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (w)hm(l.);ruhu(u)) and y « Ry (uulue,(.z);uuhu,(y)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else i « Shift-to-Zero(y) and a' < Sign-to-Zero(y)

15 elseif (z€{—1q,+14} and weight(y) =1 and sgn() # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0
18 else
19 2’ « Shift-to-Zero(x) and y' « Shift-to-Zero(y)



Checking correctness—Early days

Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)
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Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

On’y for PoPula‘/'ions of QXecl sizel
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Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

CL.aNenée: ver*i-ﬁ,iné au+OMa+iCaII7

a_” sizes



Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).
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Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
= Reduction to the VAS reachability problem (VAS engineering)
= Decidable (Mayr '81, Kosaraju ‘83).
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Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17

It is decidable if a population protocol computes a given
predicate (Presburger formula).

There is an algorithm that returns the predicate computed
by a well-specified protocol.
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Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols.

Czerwinski, Lasota, Lazic, Leroux, Mazowiecki arXiv'18

VAS reachability is non-elementary.
= Well specification is non-elementary.
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Checking correctness—Feasibility PODC'17

A class P of protocols is complete if for every
Presburger predicate ¢ some protocol in P
computes ¢

Goel: Find - comple-/'e class
of Pro+0cols verifiable in

reasonable +inne
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Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.



Checking correctness—Feasibility

PODC'17

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol

Majority[1]

Approx. Majority2]
Broadcast[3]
Thresholdis]
Remainder(s]

Sick ninjasle]

Sick ninjas[7]
Poly-log sick ninjas

[1] Draief et al., 2012
[4][5] Angluin et al., 2006

[2] Angluin et al., 2007

Predicate Q|
x>y 4
Not well-specified 3
X1 V...V Xy 2
Z,-a;x,- <C 76
Z,-a;x, mod 70 = 1 72
X >50 51
X > 325 326
x> 8-10% 66

[6] Chatzigiannakis et al., 2010

[3] Clément et al., 2011
[7] Clément et al., 2011

Timel[s]
0.1

0.1

0.1
23759
3176.5
181.6
3470.8
12.79
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Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Mission accOMPlisL.ecl.?

Not yet. For some predicates no strongly silent
succinct protocols are known.



Checking correctness—Feasibility PODC'17

A class P of protocols is complete and succinct
if for every Presburger predicate ¢ some
protocol in P with log(|,|) states computes ¢

A class P of protocols is complete and efficient
if for every Presburger predicate ¢ some
protocol in P computes ¢ in O(n?logn) time.
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Checking correctness—Feasibility PODC'17

Are s+r~ongl7 silent PPO'/’OCOIS comple‘/’e
aﬂc’ succinet? OPen

Ar‘e S'iLr‘onély silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient? OPen

Whet is the lowest exPec"Lec‘ +ine For a
comple'/'e class of PfO'/'Ocols.? OPen

...a’\c‘ por a C.OMPle‘lLe c\"\cl SUC_C_I"\C_+ CIaSS.?
OPen

cand For a comple'/'e and eflicient

class? OPen
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(N () () () ()

T o conclude ... |




Checking expected termination time  Blondin, E., Kucera CONCUR'18

Our approach:

« Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive upper bounds on Inter(n) from
stages structure



Checking expected termination time  Blondin, E., Kucera CONCUR'18

B,R — b,b

B,r — B,b BVRA A —q

b R o) e O(n*log n)
R — r og

) bl 0(1)

b,r — b,b f—/ L \

O(BAA-q O RA/\ﬁq) O(-BV —-R) A b A =b!
q#B g#R

O(n*logn)

O(exp(n))

O(-BA-RAbA-T) OB A-RAbA-I) O(-BARA=bAT)
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Checking expected termination time  Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

« Can report: O(1),0(n), O(nlogn), O(n?), O(poly(n)) or
O(exp(n)) time

* Decidability of clecking Time(n) > f(n) 7
OP@V\
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Peregrine: a tool for population protocols Blondin, E., Jaax CAV'18

Peregrine: »Haskell + microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

More to come!



Population protocols are a great model to
study fundamental questions of distributed
computation:

- Power of anonymous computation
- Network-independent algorithms
* Role of leaders

- Emergent behaviour and its limits



...and of formal verification:

- Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

- Automatic synthesis of parameterized
systems



Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

« Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

- Start of the project: Sept. 1, 2018

« Start of employment for PhD students and post-docs:
flexible, until about Sept. 1, 2019
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