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• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?



Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .
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• Initially: all ninjas active, estimation = own vote.
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Deaf Black Ninjas in the Dark

Goal of voting protocol:

• eventually all ninjas reach the same
estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas =⇒
eventually all ninjas red.

• Initially more blue ninjas or tie =⇒
eventually all ninjas blue.
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Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Go!
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Sad story …



Sensei II



Majority protocol: Why?

• The first rule has no priority over the other
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Majority protocol: Why?

• The first rule has no priority over the other
two.

NO CONSENSUS!
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Sensei II’s protocol: Are theremore redninjas thanblueninjas?
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Very sad story …



Sensei III



Sensei III’s protocol

= Attack majority = Don’t attack majority = Tie

Interaction rules: Go!
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Sensei III’s protocol
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Sensei III’s questions

Formalization questions:

• What is a protocol ?
• When is a protocol ``correct''?
• When is a protocol ``efficient''?



Sensei III’s questions

Verification questions:

• How do I check that my protocol is
correct ?

• How do I check that my protocol is
efficient ?



Sensei III’s questions

Expressivity questions:
• Are there protocols for other
problems?

• How large is the smallest protocol
for a problem?

• And the smallest efficient protocol?



Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!
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• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N
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• States: finite set Q
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Population protocols: formal model Angluin, Aspnes et al. PODC’04

( 2 5 0 0 )

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N



Population protocols: runs

Reachability graph for (3, 2,0,0):



Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)
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Population protocols: runs

Run : infinite path from initial configuration
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1 1

C2

1

. . .
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Protocol computes φ(C0) = 0, φ(C1) = 1, φ(C2) = 1, . . .
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1

C2

1

. . .

Protocol ill defined for C1 (Sensei I’s problem)



Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)
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protocols are well specified)



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …
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Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ ancn ≤ b a1x1 + · · ·+ ancn ≡ b (mod c)

• Prove that computable predicates are closed under
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Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

• Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC’07

• Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.’08

• Protocols with failures Delporte-Gallet et al. DCOSS’06

• Trustful protocols Bournez, Lefevre, Rabie DISC’13

• Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS’11



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …
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Depends on the population size n

In a natural model: expected parallel time to
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Time(n) = Inter(n)/n
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Angluin, Aspnes, Eisenstat Dist.Comp.’08
Every Presburger predicate is computable by protocols
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Open: Which predicates have logO(1) n
leaderless protocols ?
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?

• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4
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Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a state
of {0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas in
state 1, healthy ninjas
in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)

• Can be generalized to
non-powers of 2
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Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?
Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c
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Succinctness

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Proof:

• Mayr and Meyer ’82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word α leading from s to t (i.e., t = sα) has
length |α| ≥ 22n

• Construct a protocol that “simulates” derivations in the
semigroup
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Checking correctness

Protocols can become complex, even forB ≥ R:



Checking correctness

Protocols can become complex, even forB ≥ R:

How can we verify

correctness
automatically?



Checking correctness—Early days

Model checkers:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes
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Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).
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Leroux ’11:
Effectively semilinear
→ effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
⇒ Reduction to the VAS reachability problem (VAS engineering)
⇒ Decidable (Mayr ’81, Kosaraju ‘83).
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VAS reachability is non-elementary.
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Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.
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Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate |Q| |T| Time[s]
Majority[1] x ≥ y 4 4 0.1
Approx. Majority[2] Not well-specified 3 4 0.1
Broadcast[3] x1 ∨ . . . ∨ xn 2 1 0.1
Threshold[4] Σiαixi < c 76 2148 2375.9
Remainder[5] Σiαixi mod 70 = 1 72 2555 3176.5
Sick ninjas[6] x ≥ 50 51 1275 181.6
Sick ninjas[7] x ≥ 325 326 649 3470.8
Poly-log sick ninjas x ≥ 8 · 104 66 244 12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011
[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011
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Checking correctness—Feasibility PODC’17

A class P of protocols is complete and succinct
if for every Presburger predicate φ some
protocol in P with log(|φ|) states computes φ

A class P of protocols is complete and efficient
if for every Presburger predicate φ some
protocol in P computes φ in O(n2 log n) time.
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Are strongly silent protocols complete
and efficient? Open

What is the lowest expected time for a
complete class of protocols? Open

…and for a complete and succinct class?
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…and for a complete and efficient
class? Open
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Checking expected termination time Blondin, E., Kucera CONCUR’18

Our approach:

• Most protocols are naturally designed in stages

• Construct these stages automatically

• Derive upper bounds on Inter(n) from
stages structure
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B,R 7→ b,b

B, r 7→ B,b

R,b 7→ R, r

b, r 7→ b,b

(B ∨ R) ∧
∧

q ̸∈{B,R}

¬q

�

B ∧
∧
q ̸=B

¬q

 �

R ∧
∧
q ̸=R

¬q

 �(¬B ∨ ¬R) ∧ b ∧ ¬b!

�(¬B ∧ ¬R ∧ b ∧ ¬r) �(B ∧ ¬R ∧ b ∧ ¬r) �(¬B ∧ R ∧ ¬b ∧ r)

O(1)
O(1)

O(n2 log n)

O(n2 log n)

O(n2 log n)
O(exp(n))
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• Prototype implemented in +
Microsoft Z3

• Can report: O(1),O(n),O(n log n),O(n2),O(poly(n)) or
O(exp(n)) time

• Decidability of checking Time(n) ≥ f(n) ?
Open
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Peregrine: a tool for population protocols Blondin, E., Jaax CAV’18

Peregrine: + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

• Design of protocols

• Manual and automatic simulation

• Statistics of properties such as termination time

• Automatic verification of correctness

• More to come!



Conclusion

Population protocols are a great model to
study fundamental questions of distributed
computation:

• Power of anonymous computation
• Network-independent algorithms
• Role of leaders
• Emergent behaviour and its limits



Conclusion

…and of formal verification:

• Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

• Automatic synthesis of parameterized
systems



Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

• Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

• Start of the project: Sept. 1, 2018

• Start of employment for PhD students and post-docs:
flexible, until about Sept. 1, 2019
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