Black Ninjas in the Dark:
Formal Analysis of Population Protocols

Javier Esparza

Joint work with Michael Blondin, Pierre Ganty, Stefan Jaax, Antonin
Kucera, Jérome Leroux, Rupak Majumdar, Philipp J. Meyer, and Chana
Weil-Kennedy

Technical
University
of Munich

European Research Council
Established by the European Commission

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide by
majority to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive

« Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.

Graphically:

- Initially more red ninjas =
eventually all ninjas red.

- Initially more blue ninjas or tie —-
eventually all ninjas blue.

Majority protocol: Are there more

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

8d se 8
e £

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g £
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g £
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert

passive ninjas to their

color

TN g £
[N

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example1.html

Sad story ...

R CpGLE- com
Fo &Afdo\\\g o™

Majority protocol: Why?

- The first rule has no priority over the other

gapese
paaess

Majority protocol: Why?

- The first rule has no priority over the other
two.

Majority protocol: Why?

- The first rule has no priority over the other

YTy
PPy s

Majority protocol: Why?

- The first rule has no priority over the other
two.

Majority protocol: Why?

- The first rule has no priority over the other

YTy
PPy s

Majority protocol: Why?

- The first rule has no priority over the other

PO
PP

Majority protocol: Why?

- The first rule has no priority over the other

g apaee
g apaee

Majority protocol: Why?

- The first rule has no priority over the other

g apaee

NO CONSENSUS!

SRR RAR

Senseill's protocol: Are there more

SAEARRN
SRARRSN

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei Il

SAEARRN
SRARRSN

Senseill's protocol: Are there more

Interaction rules:

88-as
TN
#_) # # Sensei Il

[Ny
U Y

color

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei Il

SREARRN
SRARRN

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei ll

SREARRN
SRARRN

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example2.html

Senseill's protocol: Are there more

107 |- Sensei |l [
Insenseill

10°

103

10’

Expected number of steps

172 3 45 6 7 8 910 11 12 13 14
Initial number of red ninjas

Expected number of steps to stable consensus
for a population of 15 ninjas.

Sensei lII's protocol

ﬁ-‘ Attack majority ﬁ-‘ Don't attack majority #=Tie

Interactio

##
[N
[P

e 8
e o

888
888
Se - 82

e 8
e o

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

Sensei lII's protocol

107 |- Sensei | [
In sensei |l
105 Iusensei il |

103

10’

Expected number of steps

172 3 45 6 7 8 910 11 12 13 14
Initial number of red ninjas

Expected number of steps to stable consensus
for a population of 15 ninjas.

Sensei lll's questions

Formalization questions:

c Whet is a Pro+0col 7
. \/\/L.en IS a PI‘O'{'OCO Tcorrect'?

. V\/Lnen S a Pm+0co Teflicient'?

Sensei lll's questions

Verification questions:

- How do | check +lat ny Pr‘o+0col is
correct ?

- How do | check +lat ny Pr-o+0col is
eflicient ?

Sensei lll's questions

Expressivity questions:
- Are tlere PPO"LOCOIS Cor otler

Prob’ems?

- Hows laf‘ée s +L.e sneallest PPO+OCOI

for a Pr-oblem?
- And +le snallest eCCicient Pr-O'/'Ocol.?

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

ad-hoc networks of mobile
sensors

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like
= D =
=T - o &° 9 %0 o0 § oo
(g =
ad-hoc networks of mobile “soups” of molecules

sensors (Chemical Reaction Networks)

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like

= E"\?q;f@ﬁ 808 0 o0 & oo

=
ad-hoc networks of mobile “soups” of molecules
sensors (Chemical Reaction Networks)

S

people in social networks

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like
D~
R §°9 X o° $ oo
o = %o
ad-hoc networks of mobile “soups” of molecules
sensors (Chemical Reaction Networks)

S

people in social networks

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

& & 2

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

« Opinions: 0:Q— {0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

%), (]

“8

Population protocols: formal model

Angluin, Aspnes et al. PODC'04

+ States:

« Opinions:

- Initial states:

- Transitions:

finite set Q
0:Q—{0,1}
ICQ

TCQ xQ

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ*xQ@?

B8 22 BB

FR 7R& ##—’##

Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

- Configurations: Q — N

T
5 1

(2 3

Angluin, Aspnes et al. PODC'04

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

- Configurations: Q — N

- Initial configurations: | — N

####

(2 0 o)

Population protocols: runs

Reachability graph for (3,2, 0,0):

RESRE

Q Q IR
S88es| | 288ee| | 888

Besss { Bases A Basss

Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

|~

ol®

=
3>
2.
;
S
)
o
2

S8 &es [T

1
»
>
-

1

[~
-
IS

[~
-
o

als
-
IS
3lo
-
o
=
IS

-
o

{ Bases

[Foe

| &~
»
¥ ¢
-
-

|o

=
(=)

-

o

Population protocols: runs

Run: infinite path from initial configuration

[+

aIO

aeaes

Ly 5 2 | A8
(1 10 (1 0 h (1
£88es | I 008 [£89es

a1 2

2 , 10 2 ; 10 2 "

10 = 10 T 10 ETe)

N (IIO h alo A 4 N
Soees " Fasss | Fhses

Slo
-
IS

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol computes ¢(Co) = 0, p(C1) =1, 90(C) =1,...

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol ill defined for C;

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol ill defined for C; (Sensei I's problem)

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate ¢ is correct if
it computes ¢ (in particular, correct
protocols are well specified)

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

« Exhibit PPs for and predicates

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

« Exhibit PPs for and predicates

« Prove that computable predicates are closed under
negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

» Much harder!

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

+ Much harder!
« Dist. Comp.07 proof is “non-constructive”

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates
« Much harder!

« Dist. Comp.07 proof is “non-constructive”

- “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf/17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

+ Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC'07
 Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput./08
» Protocols with failures Delporte-Gallet et al. DCOSS'06
« Trustful protocols Bournez, Lefevre, Rabie DISC'13

- Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS'11

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Deper\cls on '/'L‘e PoPu[c:vLiOr\ size N

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Depenc's on '/'L‘e PoPula+iOn size N

In a natural model: expected parallel time to

consensus satisfies

Time(n) = Inter(n)/n

Angluin, Aspnes et al. PODC'04

Every Presburger predicate is computable in O(nlog n)
time.

Angluin, Aspnes et al. PODC'04

Every Presburger predicate is computable in O(nlog n)
time.

Angluin, Aspnes, Eisenstat Dist.Comp.’08
Every Presburger predicate is computable by protocols

in log®" n time.

Angluin, Aspnes et al. PODC'04

Every Presburger predicate is computable in O(nlog n)
time.

Angluin, Aspnes, Eisenstat Dist.Comp.’08

Every Presburger predicate is computable by protocols
in log®" n time.

Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest SODA’17
Every protocol computing majority takes Q(n) time.
Majority is computable in log®" n time by leaderless
protocols with O(log” n) states.

Angluin, Aspnes et al. PODC'04

Every Presburger predicate is computable in O(nlog n)
time.

Angluin, Aspnes, Eisenstat Dist.Comp.’08

Every Presburger predicate is computable by protocols

in log®" n time.
Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest SODA’17

Every protocol computing majority takes Q(n) time.
Majority is computable in log®" n time by leaderless
protocols with O(log” n) states.

oPer\: V\/L.icL\ Pfec:liCa'lLes L.ave |Ogo(1) n

’eacler‘fess PPO+OCO’S ?

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4

©)

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas @
in state 1, healthy
ninjas in state 0
* (m,n)— (m+n,0) .
(0)

ifm+n<a4

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

+ Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas @
in state 1, healthy W

ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4 @
S ¥ -
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

(0

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4

(=]

(=]

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

« Initially, sick ninjas @ IE\I
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4 lE\I lE\I
EESE N
ifm+n>4

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjais in a state
of {0,1,...,2¢ = 1,24

« Initially, sick ninjas in
state 1, healthy ninjas
in state 0

* (m,n)— (m+n,O0)
ifm+n<2°¢

* (m,n) = (24,2°)
ifm+n>2¢

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjais in a state « Each ninjaisina
of {0,1,...,2¢ = 1,24 state of {0,2°, ..., 26120
- Initially, sick ninjas in - Initially, sick ninjas in
state 1, healthy ninjas state 27, healthy ninjas
in state 0 in state 0
« (m,n)— (M+n,0) « (2M,2M) s (2M11)0)
ifm+n<2f ifm+1<¢
« (m,n) — (24,29 « (25,n) — (24,29

ifm+n>2¢

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjais in a state

of {0,1,...,2¢ = 1,24

« Initially, sick ninjas in
state 1, healthy ninjas
in state 0

* (m,n)— (m+n,O0)
ifm+n<2°¢

* (m,n) = (24,2°)
ifm+n>2¢

« Each ninjaisina

state of {0,2°, ..., 2¢=1.24)

« Initially, sick ninjas in

state 27, healthy ninjas
in state 0

« (2M,2M) s (2M11)0)

ifm+1</

« (25,n) — (24,29

- Can be generalized to

non-powers of 2

Just gave a protocol for X 2 ¢ with O(log c) states.

Just gave a protocol for X 2 ¢ with O(log c) states.

Is O(loglog <) Possible?

Just gave a protocol for X 2 ¢ with O(log c) states.

Not for every c....

Blondin, E., Jaax STACS'18
There exist infinitely many ¢ such that every protocol for
X 2 ¢ has at least (log€)"/* states

Just gave a protocol for X 2 ¢ with O(log c) states.

Not for every c....

Blondin, E., Jaax STACS'18
There exist infinitely many ¢ such that every protocol for
X 2 ¢ has at least (log€)"/* states

..but for some ¢, if we allow

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Blondin, E., Jaax STACS'18
For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

Blondin, E., Jaax STACS'18

For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

- Mayr and Meyer '82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word « leading from sto t (i.e., t = s«) has
length |a| > 27"

Blondin, E., Jaax STACS'18

For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

- Mayr and Meyer '82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word « leading from sto t (i.e., t = s«) has
length |a| > 27"

+ Construct a protocol that “simulates” derivations in the
semigroup

O(|Og log c) without leade~s?

O(|Og log c) without leade~s? OPen

Succinctness

O(|Og log c) without leades? OPen
And O(logloglog e) with leaders?

Succinctness

O(|Og log c) without leades? OPen

And O(logloglog e) with leaders?
OPQV\

Succinctness

O(|Og log c) without leades? OPen
And O(logloglog e) with leaders?
OPQ’\

O(log |¢|) stetes For all ©?

Succinctness

O(|Og log c) without leades? OPen
And O(logloglog e) with leaders?
OPQ’\

O(log |¢]) states For all 97 Open

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

cight(z) = [1¢] if @ € StrongStates or = € WeakStates;
weght(x) =19 1 if z € IntermediateStates.

_ 1 ifz € {+0,14,...,11,3,5,...,m};
S22 ‘{ ~1 otherwise.

"

N

@

value(z) = sgn(z) - weight(x)
/* Functions for rounding state interactions */

4 §(z) = 1 ifx = —1;1; if = = 1;z, otherwise
5 R (k) = o(k if k odd integer, k — 1 if k even)
6 Ri(k) = o(k if k odd integer, k+ 1 if k even)
—1j41 ife = —1; for some index j < d
7 Shift-to-Zero(z) = { 1;51 if o= 1; for some index j < d

T otherwise.
oy 40 if sgn(z) > 0
8 S"’”'“"Z””(”’{ —0 oherwise.
9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (vume,(l.);ralm(u)) and y « Ry (u“tm,u);wm(u)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else y' « Shift-to-Zero(y) and z' « Sign-to-Zero(y)

15 elseif (x € {—1q,+14} and weight(y) = 1 and sgn(x) # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0

else
19 '+ Shift-to-Zero(x) and y' Shift-to-Zero(y)

Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

eight(z) = |¢1 1[@ € StrongSlates or & & WeakStates;
weghtlT) =\ 1 ife € IntermediateStates.

eg"(,):{ 1 ifz € {+0,1a,...,11,3,5,...,m}; HOW c.eN we Ver‘|p\7

-

N

—1 otherwise.

@

value (z) = sgn(z) - weight(z)

/* Functions for rounding state interactions */
4 ¢(z) = -1, if e = —1;1; if @ = L, otherwise
5 Ry (k) = ¢(k if k odd integer, k — 1 if k even) correcitness
6 Ri(k) = o(k if k odd integer, k + 1 if k even)

—1j41 ife = —1; for some index j < d

Shift-to-Zero(x) = { L ':)f”a“mwllégfm some index j < d au+o M&+‘ CG(17 _?

+0 if sgn(z) > 0
0 oherwise.

<

8 Sign-to-Zero(x: :{

9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (w)hm(l.);ruhu(u)) and y « Ry (uulue,(.z);uuhu,(y)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else i « Shift-to-Zero(y) and a' < Sign-to-Zero(y)

15 elseif (z€{—1q,+14} and weight(y) =1 and sgn() # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0
18 else
19 2’ « Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Checking correctness—Early days

Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Checking correctness—Early days

Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

On’y for PoPula‘/'ions of QXecl sizel

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

NO+ aV'l’OMa'l'iC!

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

CL.aNenée: ver*i-ﬁ,iné au+OMa+iCaII7

a_” sizes

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).

Checking correctness—Decidability Acta Inf.'17

Checking correctness—Decidability Acta Inf.'17

Bottom confs.

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T

Eilenberg and Schiitzenberger '69:
Semilinear set
— Presburger

Checking correctness—Decida Acta Inf.17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
= Reduction to the VAS reachability problem (VAS engineering)

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
= Reduction to the VAS reachability problem (VAS engineering)
= Decidable (Mayr '81, Kosaraju ‘83).

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17
It is decidable if a population protocol computes a given
predicate (Presburger formula).

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17

It is decidable if a population protocol computes a given
predicate (Presburger formula).

There is an algorithm that returns the predicate computed
by a well-specified protocol.

Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols.

Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols.

Czerwinski, Lasota, Lazic, Leroux, Mazowiecki arXiv'18
VAS reachability is non-elementary.

Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols.

Czerwinski, Lasota, Lazic, Leroux, Mazowiecki arXiv'18

VAS reachability is non-elementary.
= Well specification is non-elementary.

Checking correctness—Feasibility PODC'17

A class P of protocols is complete if for every
Presburger predicate ¢ some protocol in P
computes ¢

Checking correctness—Feasibility PODC'17

A class P of protocols is complete if for every
Presburger predicate ¢ some protocol in P
computes ¢

Goel: Find - comple-/'e class
of Pro+0cols verifiable in

reasonable +inne

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Checking correctness—Feasibility

PODC'17

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol

Majority[1]

Approx. Majority2]
Broadcast[3]
Thresholdis]
Remainder(s]

Sick ninjasle]

Sick ninjas[7]
Poly-log sick ninjas

[1] Draief et al., 2012
[4][5] Angluin et al., 2006

[2] Angluin et al., 2007

Predicate Q|
x>y 4
Not well-specified 3
X1 V...V Xy 2
Z,-a;x,- <C 76
Z,-a;x, mod 70 = 1 72
X >50 51
X > 325 326
x> 8-10% 66

[6] Chatzigiannakis et al., 2010

[3] Clément et al., 2011
[7] Clément et al., 2011

Timel[s]
0.1

0.1

0.1
23759
3176.5
181.6
3470.8
12.79

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Mission accOMPlisL.ecl.?

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Mission accOMPlisL.ecl.?

Not yet. For some predicates no strongly silent
succinct protocols are known.

Checking correctness—Feasibility PODC'17

A class P of protocols is complete and succinct
if for every Presburger predicate ¢ some
protocol in P with log(|,|) states computes ¢

A class P of protocols is complete and efficient
if for every Presburger predicate ¢ some
protocol in P computes ¢ in O(n?logn) time.

Checking correctness—Feasibility PODC'17

Are s-/'ronély silent Pr‘O'/’OCOIS comple'f'e

af\c' succinet?

Checking correctness—Feasibility PODC'17

Are S'/'r‘or\élt, silent PPO'/’OCO!S comple‘/‘e

af\c' succinet?

Are S'lLr‘Of\éIV silent PPO'ILOC_OIS comPle'lLe
and eflicient?

Checking correctness—Feasibility PODC'17

Are s+r~onél~7 silent Pr-o+0cols comple‘/’e

af\c’ SUccinc')L.?

Ar‘e S‘lLr‘onéIV silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient?

V\/L.c:vL s '/’L.e lowes+ exPe-c""ec:j +ine For a

comple-/'e class of PfO'/'Ocols.?

Checking correctness—Feasibility PODC'17

Are s+r~onél~7 silent PPO+OCOIS comple‘/’e

af\c’ SUccinc')L.?

Ar‘e s+r‘onél\7 silent Pr‘O‘l‘Ocols comple'/'e
and eflicient?

Whet is the lowest exPec""ec:j +ine For a

comple'/'e class of PfO'/'Ocols.?

...ar\cl por a COMPle‘lLe c\"\cl SUcci'\c_‘IL CIaSS.?

Checking correctness—Feasibility PODC'17

Are s+r~ongl7 silent PPO'/’OCOIS comple‘/’e

aﬂc’ SUccinc')L?

Ar‘e S'iLr‘onély silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient?

Whet is the lowest exPec"Lec‘ +ine For a

comple'/'e class of PfO'/'Ocols.?

...a’\c‘ por a C.OMPle‘lLe c\"\cl SUC_C_I"\C_+ CIaSS.?

cand For a comple'/'e and eflicient

claSS.?

Checking correctness—Feasibility PODC'17

Are s+r~ongl7 silent PPO'/’OCOIS comple‘/’e
aﬂc’ succinet? OPen

Ar‘e S'iLr‘onély silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient? OPen

Whet is the lowest exPec"Lec‘ +ine For a
comple'/'e class of PfO'/'Ocols.? OPen

...a’\c‘ por a C.OMPle‘lLe c\"\cl SUC_C_I"\C_+ CIaSS.?
OPen

cand For a comple'/'e and eflicient

class? OPen

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Checking expected termination time Blondin, E., Kucera CONCUR'18

Our approach:

« Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive upper bounds on Inter(n) from
stages structure

Checking expected termination time Blondin, E., Kucera CONCUR'18

B,R — b,b

B,r — B,b BVRA A —q

b R o) e O(n*log n)
R — r og

) bl 0(1)

b,r — b,b f—/ L \

O(BAA-q O RA/\ﬁq) O(-BV —-R) A b A =b!
q#B g#R

O(n*logn)

O(exp(n))

O(-BA-RAbA-T) OB A-RAbA-I) O(-BARA=bAT)

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

« Can report: O(1),0(n), O(nlogn), O(n?), O(poly(n)) or
O(exp(n)) time

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

« Can report: O(1),0(n), O(nlogn), O(n?), O(poly(n)) or
O(exp(n)) time

* Decidability of clecking Time(n) > f(n) 7
OP@V\

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Peregrine: a tool for population protocols Blondin, E., Jaax CAV'18

Peregrine: »Haskell + microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

More to come!

Population protocols are a great model to
study fundamental questions of distributed
computation:

- Power of anonymous computation
- Network-independent algorithms
* Role of leaders

- Emergent behaviour and its limits

...and of formal verification:

- Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

- Automatic synthesis of parameterized
systems

Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

« Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

- Start of the project: Sept. 1, 2018

« Start of employment for PhD students and post-docs:
flexible, until about Sept. 1, 2019

T HANIK yOUI

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

T HANIK yOUI

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

